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a b s t r a c t

Standardization and technology advancements have helped the realization of the Internet of things (IoT).
The availability of low-cost IoT devices has also played a key role in furthering IoT research, development,
and deployment. IoT operating systems (OSs) provide integration of software and hardware components.
The availability of standard protocols, heterogeneous hardware support, ease of development, and simu-
lation or emulation support are desirable features of IoT OSs. Contiki OS is one of the contenders for future
IoT OSs. It was proposed in 2003, and since then, it has been continually under development and upgraded
by professionals, academia, and researchers. Contiki OS supports open source, Internet standards, power
awareness, dynamic module loading, and many hardware platforms. The diverse applications of IoT,
including smart homes, smart health, smart cities, require efficient network connectivity and demand
intelligent routing protocols that can handle heterogeneous, mobile, and diverse networks. Subsequently,
designing routing protocols for memory- and central processing unit (CPU)-constrained IoT devices is a
very challenging task. Therefore, this paper surveys the state-of-the-art routing protocols of Contiki OS.
To the best of the authors’ knowledge, this is the first study to classify the Contiki OS routing protocol
literature and list the potential challenges and future work.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The Internet of things (IoT) [1] is an emerging topic that con-
nects durable goods, cars and trucks, industrial and utility compo-
nents, and sensors to the Internet with data analytics capabilities.
IoT promises to offer a fully connected smart world to transform
everyday work, play, and life. IoT devices integrate the different
objects through the interaction of software along with wireless
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enabling technologies. IoT operating systems (OSs) provide the
environment for software interaction, and without it, IoT devices
would just be non-functioning devices. The IoTOS provides various
flexible features that facilitate integration of electronic products
and technologies.

IoT resource-constrained devices possess low-power embed-
ded computational and network-enabled devices to keep produc-
tion costs low. These IoT devices offer low storage and memory
capabilities. Thus, the IoT OS should have the following properties:
small memory footprint, support for heterogeneous hardware, en-
ergy efficiency, network connectivity, real-time capabilities, and
security.
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Table 1
Comparative overview of existing reviews on Contiki OS.

Discussed features/Routing protocols This review [7] [9] [8]

RPL √ √

LOADng √ √

Opportunistic routing √

Secure routing √

Context aware routing √

IPV6 neighbor discovery protocols √ √

Open research issues and recommendations √ √

Contiki OS [2] is an open-source, lightweight, and event-driven
IoT OS designed for resource-constrained embedded systems. Con-
tiki OS requires at least 2 kB random access memory (RAM) and 30
kB read onlymemory (ROM). Contiki OS offers bothmultithreading
and optional preemptivemultithreading. It is based on lightweight
stack threads called protothreads [3]. Contiki OS achieves resource
efficiency using an event-driven kernel and preemptive multi-
threading. It is designed to run on low-power battery-driven IoT
platforms, which are intended to run for many years without
human intervention. It supports standardwireless communication
stacks. Further, it supports a range of hardware from different
companies such as Texas Instruments (TI), Advanced RISCMachine
(ARM), andAtmel.Moreover, it provides the simulation software to
run, debug, and test the development before flashing the program
into real IoT devices.

Contiki OS further provides a shell, file system, database sys-
tem, runtime dynamic linking, cryptography libraries, and a fine-
grained power-tracing tool. It includes complete testing facilities
such as unit, regression, and full system integration. The primary
programming language of Contiki OS is C. However, Java [4] and
Python [5] can be used in the runtime environment. Along with
Contiki OS, Tiny OS [6] is also a popular and widely used OS. It
also targets very constrained devices. Tiny OS uses nesC language
primitives that make it hard to learn and it lacks a large and active
developer community. Therefore, Contiki OS becomes the choice
for IoT research and commercial systems. It is actively developed
by the professionals, researchers, and academia.

1.1. Motivation

Contiki OS is extensively developed and used by the research
community. There are many proposals for each layer of transmis-
sion control protocol/Internet protocol (TCP/IP). However, to the
best of the authors’ knowledge, no previous study has provided
a detailed research summary for each layer. Hence, this is the
first paper to provide a comprehensive survey of proposed routing
protocols, classification, and future research directions. This should
help academia, researchers, and developers to kick start their work
by learning the Contiki OS routing protocol research performed so
far. Table 1 summarizes the contribution of this survey as drawn
from the recent literature in the field. To the best of author’s
knowledge, there is no detail survey on the topic. The survey [7]
mainly focuses on the RPL, The authors of [8] only discussed IPV6
neighbor discovery protocol. However, in contrast to [7,8], this
survey paper pay attention to the comprehensive classification
that covers related papers up to the most recent 2017 literature,
and detail open research recommendations and directions for each
classification for the routing protocols supported by Contiki IoT OS.

1.2. Related work

Hahm et al. [9] defined three design categories of IoT OS. The
first category includes multithreaded OSs. In a multithreading OS,
each thread runs in its own context and manages its own stack.
Hence, it introduces memory and runtime overhead. The second

category is event-driven OSs. An event-driven OS waits for an
external interrupt and processes it according to its handler. This
approach ismemory efficient and yields low complexity. However,
it imposes certain restrictions on programmers as it is not easy
to express all programs in a finite state machine (FSM). The final
category is real-time OSs. It guarantees to meet the time deadline
of any process and imposes strict constraints to the developers.
Thus, these strict restrictions result in an inflexible OS and porting
to other hardware platforms is rather difficult. It is anticipated that
the future IoT devices will be smaller, cheaper, and much more
energy efficient. However, they are unlikely to have more memory
or CPU power [10].

Farooq and Kunz [11] provided a classification framework to
compare the existingOSswith regards to coreOS features. They de-
fined architecture, reprogramming, executionmodel, and schedul-
ing as the core OS features. Further, in evaluation they also con-
sidered power management, simulation support, and portability.
They analyzed different applications and suggested the ideal OS for
those applications to draw a clear line for an application developer.
Reusing [12] laid out the main requirements for an OS based on
limited resources, concurrency, flexibility, and low power. Follow-
ing this, he compared TinyOS [6] and Contiki OS. He concluded
that TinyOS was better suited when resources were really scarce.
In comparison with TinyOS, Contiki OS was the best choice when
flexibility was the main concern.

Willmann [13] provided a valuable insight into Contiki OS.
He found that an event-driven system over preemptive multi-
threading reduces the memory footprint. However, this feature
can be added to those processes that explicitly require it. Al-
Fuqaha et al. [14] presented an overview of enabling technologies,
protocols, applications, and the recent research in IoT. They briefly
discussed Contiki OS features such as language support, minimum
memory requirements, programming model, dynamic memory
allocation, Codo [15], the filesystem-level security, and routing
attacks detection using an intrusion detection system (IDS) [16].
Ranjan et al. [17] studied Contiki OS in terms of the programming
model, memory management, and architecture. Further, they dis-
cussed the aforementioned issueswith the various OSs forwireless
sensor networks (WSNs) [18–20].

1.3. Main contributions

The network layer is responsible for the correct delivery of data
received from the upper layer to its destination and reception of
data received from the lower layer. It is evident from the related
work that the literature lacks a detailed survey on the routing
protocol supported by Contiki OS. Therefore, this paper is the first
work, to the best of the authors’ knowledge, to provide an overview
of the Contiki OS routing protocol and contributions of this paper
are as follows:

• Provides an overview of the Contiki OS file structure;
• Briefly explains Contiki OS network stack (netstack);
• Classifies the Contiki routing protocol research;
• Summarizes the literature according to the categorization;
• Lists the potential future work;
• Provides open research issues and directions.
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Fig. 1. The Contiki OS network stack.

1.4. Paper organization

Table 2 lists the abbreviations used in this paper. The rest of
the paper is organized as follows. Section 2 provides a general
overview of Contiki OS file structure and discusses the Contiki OS
netstack. Section 3 classifies and summarizes the Contiki OS sup-
ported routing protocols literature. Section 4 lists future research
recommendations and directions. Finally, Section 5 concludes the
paper.

2. Contiki OS overview

OS is software to manage and control hardware and software
resources of a device, in which OS is used [3,11]. Because of the
factors affecting the design of OS, different types of OS are pro-
posed and in use today. Although those different types of OS share
common components and basic operations, the differences lie in
resource allocation for OS operations, implementations of opera-
tions, existence of new kinds of operations, absence of some basic
operations, etc. One of the widely-used OSs today is an embedded
OS [12]. Recent developments in micro-electro-mechanical sys-
tems (MEMS) lead to the wide use of the embedded OS in different
applications and devices. Compared to a computer system OS, the
embedded OS can be highly customizable, application-specific and
suitable for real-time applications [11]. Another important type of
OS is a network OS, which is oriented to computer networking.
These kinds of OS can be used in servers, routers, switches, and
so on to support networking operations. Although the computer
systemOS and embedded OS can support communication protocol
stack and networking, but a level and type of the support, and
functions for networking operations make difference between the
former two OSs and the network OS. Another key difference is
that network OS encompasses not only a single device, but it also
encompasses several devices and coordinates, manages, and con-
trols networking operations and network resources among these
devices.

Contiki OS contains app, cpu, dev, platform, core, tools, doc,
regression-tests, and examples directories. Contiki OS app direc-
tory contains supported applications. It contains IoT supported
applications ranges from coap, mqtt, etc., to the webserver. The
cpu directory contains specific microcontroller (MCU) files. The
dev directory lists all the external chips and devices. The platform
directory includes all the specific libraries and drivers. The core di-
rectory contains all the Contiki OS core files and libraries. The tools
directory contains flashing tools, debugging, and simulation. The
doc directory encompasses the self-generated doxygen documen-
tation. The regression-tests directory incorporates all the nightly

regression tests. The examples directory consists of comprehensive
ready to build examples. Table 3 lists the Contiki OS file structure.

There are four fixed layers in Contiki OS. Fig. 1 shows the Contiki
OS netstack. It contains radio, radio duty cycle (RDC), medium
access control (MAC), and network layers. Contiki OS automatically
forms a wireless Internet protocol version6 (IPv6) [21] network
with the help of the routing protocol. The network layer is further
subdivided into the upper IPv6 layer and the lower adaptation
layer. The function of the adaptation layer is to provide IPv6 and
user datagram protocol (UDP) header compression and fragmenta-
tion to transport IPv6 packets with a maximum transmission unit
(MTU) [22]. MAC provides the functionality of collision avoidance
and backoff. RDC is essential to achieve energy efficiency while
maintaining network communication. It saves energy by allowing
a node to keep the radio transceiver off most of the time. The
radio layer receives bytes or full packets via interrupt handlers. The
incoming data is buffered and the process is polled. This polling
mechanism causes the process to pass on to the special event and
then finally it is passed to the upper layers.

3. Contiki OS supported routing protocols

Routing is a crucial operation in network and communication
systems, which deals with packet delivery from source to destina-
tion [7,8]. The choice of OS and design of protocol stack have direct
effects on the performance of routing protocols [9]. For example, if
OSdoes not support real-time applications, real-time related issues
cannot be addressed efficiently by a routing protocol or network
stack alone [9]. Moreover, IoT devices are considered to be under
resource constraints, especially in terms of energy and storage [13].
Hence, OS should manage efficiently resources of the devices by
exploiting trade-off between resource utilization efficiency and
protocol performance. Another aspect of OS, which can affect
performance of a routing protocol, is availability of programming
interface to easily update/upgrade of protocols. This is important
for various reasons. For example, over the time bugs or pitfalls of
protocol implementationmight be detected and the upgrademight
be needed to improve the performance of the protocol. In such
cases, OS provides smooth update/upgrade. Hence, in this section
we examine proposed protocols from different aspects including
impacts of Contiki OS.

The IoT constitute IoT devices that can store data on the servers
or clouds. The IoT devices are battery operated and need to be
energy efficient. Thus, theymay run formany yearswithout human
intervention. The network can be very large and nodes messages
have to travel multi-hop before reaching the central or sink node.
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Table 2
List of abbreviations.

Symbol Description

3DES Triple Data Encryption Standard
6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
ACO Ant Colony Optimization
AES Advanced Encryption Standard
AES-CMAC AES Cipher-based Message Authentication Code
AH Authentication Header
AMI Advanced Metering Infrastructure
AT Adaptive Threshold
BMRF Bidirectional Multicast RPL Forwarding
CBC–CS Cipher Block Chaining–Cipher Stealing
CCI Channel Check Interval
CMAC Cipher-based Message Authentication Code
CORB Context-aware Opportunistic Resource-based
CTI Cross Technology Interference
DAO Destination Advertisement Object
DAO-ACK DAO Acknowledgment
DIO DODAG Information Object
DIS DODAG Information Solicitation
DODAG Destination-Oriented Directed Acyclic Graph
EBAR Energy Balancing Adaptive Routing Protocol
ECC Elliptic Curve Cryptography
EE Energy Consumption
ESP Encapsulating Security Payload
E-TRICKLE Enhanced Trickle
ETX Expected Number of Transmissions
FSM Finite State Machine
iACK Implicit Acknowledgment
IDS Intrusion Detection System
IKE Internet Key Exchange
Imin Minimum Interval
IoT Internet of Things
IP Internet Protocol
LLN Low-power and Lossy Networks
LOADng Lightweight On-demand Ad-hoc Distance Vector Routing Protocol —

Next Generation
MAC Medium Access Control
ME-TRICKLE Modified E-Trickle
MIB Management Information Base
MRHOF Minimum Rank with Hysteresis Objective Function
MTU Maximum Transmission Unit
ND Neighbor Discovery
netstack Network Stack
OCB Offset Codebook Mode
OF Objective Function
opt-TRICKLE Optimized Trickle
ORPL Opportunistic RPL
ORPL-LB ORPL Load Balancing
OS Operating System
PA Precision Agriculture
PDR Packet Delivery Ratio
pro-RPL Proactive RPL
PRR Packet Reception Ratio
QoS Quality of Service
RAM Random Access Memory
RDC Radio Duty Cycle
ROM Read Only Memory
RPGM Reference Point Group Mobility
RPL Routing Protocol for Low-Power and Lossy Networks
RRP Ripple Routing Protocol
RWM RandomWaypoint model
SCAR Sensor Context-aware Routing
SINR Signal-to-interference-plus-noise ratio
SMRF Stateless Multicast RPL Forwarding
SNMP Simple Network Management Protocol
TI Texas Instruments
TM Trickle Multicast
WSN Wireless Sensor Network
µIP MicroIP

All the communication within the IoT devices uses wireless tech-
nology. This raises many problems and designers must propose
very effective and reliable solutions that can run for long periods
of time. The network layer focuses on how packets are routed
towards the destination. Hence, each node takes a decision to route
the packet to the next hop. All these decisions are made by the

routing protocol. The IoT devices are very limited in terms of hard-
ware resources and, hence, many IoT OSs use MicroIP (µIP) stack
for the communication. TheMicroIP stack supports IPv6 alongwith
IPv6 over low-power wireless personal area networks (6LoWPAN)
protocols. There are many routing protocol proposals for Contiki
OS. Fig. 2 depicts the Contiki routing protocol proposal date.
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Fig. 2. Contiki OS routing protocols proposed in the literature.

Table 3
Contiki OS directory structure.

Directory Description

app Contiki OS supported applications.
cpu MCU files
dev External chip and devices
platform Specific files and platform drivers
core Contiki core files and libraries
tools Flashing, debugging, simulation
doc Self-generated doxygen documentation
regression-tests Nightly regression tests
examples Ready to build examples

3.1. Routing protocol for low-power and lossy networks

Low-power and lossy networks (LLNs) consist of processing-,
memory-, and energy-constrained devices. Hence, traditional pro-
tocols such as open shortest path first (OSPF) [23], optimized link
state routing protocol (OLSR) [24], routing information protocol
(RIP) [25], ad hoc on demand distance vector (AODV) routing
protocol [26], and dynamic source routing (DSR) protocol [27,28],
etc., cannot be used in LLN. Routing protocol for LLNs (RPL) [29]
is an effective solution for constrained IoT devices. RPL was pre-
liminary designed to connect billions of IoT devices in the future.
It is based on the famous distance-vector (DV) routing approach
and run on top of many link layer mechanisms, including the IEEE
802.15.4 standard. RPL is highly scalable and adaptive to network
conditions. Whenever default routes are inaccessible, it provides

alternative routes to the destination. It disseminates information
using Trickle [30] over dynamic network topology.

RPL builds a destination-oriented directed acyclic graph
(DODAG) in which all leaf nodes have one route to the root node.
Initially, each node sends DODAG information object (DIO) as an
advertisement presenting itself as a root node. This message is
disseminated in the network and eventually the whole DODAG is
built. When a node wants to communicate to the other node, it
sends a destination advertisement object (DAO) to its parents, the
parents direct this message to the root node and eventually root
node routes it to the destination. New node joins the network by
sending a DODAG information solicitation (DIS) request to the root
node and root node confirms the joining by sending back a DAO
acknowledgment (DAO-ACK). RPL nodes can be stateless or state-
ful. A stateless node keeps track of its parent only. In this case, only
root node has the complete knowledge of DODAG and, hence, all
the traffic goes through the root node. In the case of a stateful node,
it keeps the information of its children and parents. Hence, it man-
ages all the communication within the subtree of DODAG and for-
wards the rest of the traffic to the root node. The objective function
(OF) is used to obtain the optimized routes towards the DODAGs.
The OF ranks the node which is the approximate distance from the
node to the DODAG root node. It also tells nodes how to select the
parent nodes. Fig. 3 represents an RPL node rank diagram.

3.1.1. ContikiRPL
3.1.1.1. RPL evaluation and improvements. This section covers ba-
sic the ContikiRPL implementation, evaluation in various scenarios,
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Fig. 3. RPL node rank.

impact of mobility, and improvements such as reliability, through-
put, network lifetime, and load balancing. Tsiftes et al. [31] de-
signed and implemented RPL inside the uIPv6 stack [32]. They
verified the implementation using simulation on a testbed of 13
nodes in an office environment. They ran ContikiRPL on top of
the Contiki MAC protocol and measured the power consumption
of the system. They used power efficiency and implementation
complexity as the performance metrics. The testbed experiments
were performed for one night and the simulation ran for 10000
s. The nodes generate 40 packets per minute. In simulations, they
obtained a 100% packet delivery. However, in experiments they
incurred 10% packet loss. The duty cycle of leaf nodes is around
0.5%–0.8% and that of routing nodes is 1%–3%. These results reveal
that it is highly energy efficient and nodes can last for many years.
Further, ContikiRPL is also memory efficient and code can reside in
only 6%–8% of ROM and RAM.

Chen et al. [33] evaluated the basic behavior of ContikiRPL in
precision agriculture (PA) using simulation. They evaluated time
to find the first source–destination (src-dst) pair, time to complete
convergence, and time to achieve a completely stable network.
The authors concluded that the first two metrics are not affected
by the number of nodes in the network. However, the metric of
time to achieve a completely stable network depends on the total
number of nodes. The drawback of this paper is that they proposed
the theoretical PA architecture without any simulations or testbed
results. Hence, the performance of the proposed architecture is
questionable.

Acillotti et al. [34] first found the drawbacks of ContikiRPL
and then proposed an improved RPL to increase reliability. They
conducted experiments using a 90-mote testbed and 100-node
simulation evaluation. Initially, they pointed out the problems of
ContikiRPL and summarized these as follows. ContikiRPL shows
very high packet losses. Packet losses are not related to the number
of hops. Once node choses its parent with a bad link, the Contiki
OS link estimation technique does not allow the node to switch
to a better parent. Afterwards, they proposed a cross-layer design
approach to increase the link quality estimation capability and
manage neighbor information adaptively and efficiently. Their re-
sults depict a clear improvement in packet delivery rates, decreases
in end-to-end delay, and increased energy efficiency. Furthermore,
they found that asynchronous duty cycling decreases the packet
delivery ratio (PDR) due to increased network contention and
this resulted in more packet collisions. Chemate1 and Pingat [35]

proposed a cross-layer design approach to enhance the reliability
of data transmissions. They discussed the coordinated policies to
oversee RPL and IP neighbor tables. However, the authors did not
validate the proposed scheme at all. Therefore, the effectiveness of
the proposal cannot be assumed.

Lamaazi et al. [36] analyzed the performance characteristics of
RPL in different network scenarios. They considered the number of
received and lost packets, the number of hops, the routing metric
(Rtmetric), the expected transmission count (ETX), and power
consumption. All thesemetrics increasewith the number of nodes.
They also evaluated mobility by using a random waypoint model
(RWM) and random walk model [37]. The mobility model directly
affects the packets reception ratio. Therefore, it also consumes
more energy. The number of sink nodes also plays a crucial role
in energy consumption: as the number of sink nodes increases,
overall energy efficiency also increases. This work needs testbed
evaluation. Further, it also needs evaluation using reference point
group mobility (RPGM), nomadic, and self-similar least action
walk [38–41].

Khan et al. [42] proposed a sink-to-sink coordination frame-
work by utilizing RPL periodic route maintenance messages. The
authors aimed to enhance the overall throughput and network
lifetime. The sink node dynamically adjusts the network size for
load balancing. Hence, it achieves higher throughput. They sim-
ulated random and grid multi-sink topologies. The results por-
trayed improved throughput compared with RPL. However, this
approach requires further testbed evaluation and an investigation
of whether the proposed scheme is scalable with an increasing
number of nodes. Moreover, how the proposed scheme performs
in the case of sink failure should be checked.

Banh et al. [43] developed a radio module method to estimate
themote energy consumption (EE) in choosing the path to relay the
data to the sink. They combined ETX and EE to achieve load balanc-
ing. They used a 25-mote simulation scenario to verify the results.
The results depict improved energy balance with improved energy
efficiency and PDR. Nevertheless, this scheme needs testbed eval-
uation. Further, it needs validation in a dense network topology.

Kim et al. [44] proposed a mechanism to provide multi-hop
routes to downward traffic-centric applications. They performed
the experiment on real testbed using 31 TelosB motes. In the
test bed environment, the proposed DT-RPL showed better per-
formance in terms of packet delivery ratio, overheads, and duty-
cycle. Riker et al. [45] provide energy-harvesting efficiency in a
multi-hop network using a neutral operation approach. They used
simulation-based 40 nodes and implemented the proposed solu-
tion (RAME) on ContikiRPL. RAME uses the information of lowest
energy node to find an optimal path. The simulation-based result
showed the energy consumption of minimum energy node is con-
trolled in an efficient manner. However, for better verification, the
testbed implementation is required. Similarly, another research is
being done to provide a better congestion mechanism [46]. The
proposed mechanism (OHCA) considered 25 nodes and utilized
three metrics including buffer occupancy, expected transmission
count and queuing delay. The mathematical analysis along with
simulation shows OHCA improves performance in terms of overall
throughput, average weighted fairness index, end-to-end delay,
energy consumption and a number of lost packets by an overall
average of more than 28.36%, 28.02%, 48.07%, 31.97% and 90.35%,
respectively. These results show that it is very efficient to im-
prove overall performance. However, the proposed solution in-
troduces significant overheads in the network. Sheeraz et al. [47]
provide a better parent selection mechanism for RPL scenario.
They combined the ETX and Hop count metric and proposed a
hybrid solution to utilize the good aspects of both matrices. The
simulation-based results obtained from 20 nodes network scenar-
ios are compared with ETX, ELT and HOP metric. The results show
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poor performance of the proposed solution in terms of a number
of parent changes, and a number of control packets. EC-MRPL is an
energy efficientmechanism proposed byMaha et al. EC-MRPL uses
a mobility aware routing mechanism for RPL network. The pro-
posed mechanism maintains the mobile nodes connectivity. The
simulation-based study shows that signaling cost has been reduced
by 24 times. Similarly, the handover delay is about 156.25 ms and
60.65 ms for the proposed protocol compared to 56640 ms for
RPL. However, the better handover delay also leads to more power
consumption. For mobile sensing motes, another mechanism is
proposed called BRPL [48], which support time-varying data and
mobility. The detailed study is carried out using experimental and
simulation environment. They considered 100 nodes in both ex-
perimental and simulation setup. The results are evaluated based
on packet loss rate, end-to-end delay and communication over-
heads. However, the energy consumption information is missing
and which is required for detailed analysis.

Latib et al. [49] proposed other mobility strategies for the IoT
network. To evaluate a mobility of RPL, they used 25 nodes and
analyzed three scenarios, i.e., sink and sensor nodes are static,
static sink and the mobile sensor node, sink and sensor nodes are
mobile. Based on these scenarios they proposed three strategies for
a better performance of RPL inmobility scenarios. First, in mobility
scenarios must operate in lower packet rates. Second, it should use
higher duty-cycle rate. Lastly, sink nodemust position in the center
ofmobile nodes. They provide the outcomeof these three scenarios
in terms of packet delivery ratio, power consumption and radio
duty cycle. However, they did not compare it with the previously
proposed mechanism.

Harith et al. [50] proposed mechanism for dynamic mobility to
improve end–end delay and energy consumption. The solution is
based on received signal strength identification. The considered
metrics are packet delivery ratio, end-to-end delay, and energy
consumption. They used 25mobile nodes and one static sink node.
The nodes move randomly at 0–5 m/s with a maximum pause
of the 30 s. The simulation-based result shows that the proposed
mechanism provides 78% packet delivery ratio.

IRPL is an energy efficient routing protocol for IoT net-
works [50], which is based on clustering technique. The simulation
results show that the IRPL balance the energy consumption more
efficiently, compared with the original RPL protocol. They used 50
nodes in a simulation environment that are distributed randomly.
Energy consumption and network lifetime are used tomeasure the
proposed algorithm performance.

3.1.1.2. Interoperability. IoT networks consist of heterogeneous
devices, and interoperability is necessary for network operations.
Unfortunately,most research considered only homogeneous nodes
operating with the same OS. The implementation of different pro-
tocols, stacks, specifications, andnon-standardnodes are themajor
hurdles in interoperability. This section discusses interoperability
implementations.

Ko et al. [51] investigated the interoperability and performance
of Contiki OS and TinyOS RPL implementations. This was the first
work towards fully interoperable sensor networks. They used sim-
ulations to evaluate the performance of both protocols. They used
the packet reception ratio (PRR) and number of parent changes as
performance metrics. Their results revealed that subtle difference
in underlying layers affects the performance. Furthermore, the
simulator must also support the fine-grained timing and interop-
erability requirements on underlying layers. They only considered
theRPLwith objective function zero (OF0) that considers hop count
as ametric for evaluation and cannot test itwith theminimumrank
with hysteresis objective function (MRHOF) that selects a route
based on ETX due to the implementation complexity and code
bugs. Moreover, this paper lacked a testbed evaluation to confirm
the results.

Parasuram et al. [52] discussed the pros and cons of RPL and
the proposed interoperable RPL-Lite. They summarized the issues
that included redundant and unused features of RPL, unsupported
RPL applications and potential features beneficial for RPL. There-
after, they proposed the RPL-Lite version. However, it was only a
theoretical proposal. Thus, it requires implementation, testing, and
validation to fully realize its effectiveness.

3.1.1.3. Local repair and link failures. Local repair is triggered to
find the alternative path without considering the optimal path.
When the parents are unreachable, the node first tries to associate
itself with a new root from the siblings to reach the parents. In
case of no response from the siblings, it either waits for the next
periodic sending of a DIO by its neighbors or sends a DODAG DIS
message requesting a new DIO from the DODAG. Hereafter, the
node finds the best parent and rejoins the network. This section
briefly elaborates on local repairs literature.

Korte et al. [53] studied the ContikiRPL local repairs. They eval-
uated it using a testbed of six motes in a linear topology. This
was the first work to analyze and test the ContikiRPL local repair
process efficiency. Further, they designed and implemented an
RPL management information base (MIB) using the Contiki simple
network management protocol (SNMP) agent [54,55]. The RPL-
MIB helps in studying the local repair process of ContikiRPL. They
ran a comprehensive test and calculated the fallback parent, DIO
timer, route lifetime, fallback sibling, greediness of nodes, poisoned
tree, and rebuild build memory. The results showed that the Con-
tikiRPL repair mechanism works well. They also found that the
time taken to switch to a new parent and build a subtree is under
the maximum time allowed for an RPL DODAG repair in the case
of node failure or movement. However, route timeouts and global
repairs consume extra energy. They evaluated the performance on
a very simple linear topology although it is not realistic. Hence, it
requires further evaluation considering adensermote-deployment
scenario.

Khelifi et al. [56] presented a robust and proactive RPL (pro-
RPL) mechanism to mitigate the RPL nodal or link failures. They
first provided an analysis and then validated it using simulation.
Pro-RPL monitors node conditions to ensure timely detection of
failures. They introduced a dynamic tunable suffering index to
detect the chances of failure and trigger the pro-RPL on time to
reconstruct the DODAGs according to the parents. The simulation
results show that pro-RPL delivers more packets compared with
ContikiRPL as the network size increases. Further, it saves energy
by detecting failures in advance using the node suffering index and
dynamically performs repairs before the failure happens. Thus, it
offers a viable failuremitigation protocol and increases the lifetime
of the network. However, pro-RPL requires further validation using
a testbed. Future research directions include identifying themobil-
ity patterns and probabilistic trajectory of a floating DODAGS node.
Furthermore, inclusion of a dynamic load distribution in pro-RPL
to prolong the network lifetime is also a very intrinsic problem.
Alvi [47] proposed another mechanism for route and recovery
maintenance. They only used seven nodes for the simulation study.
The performance is measured using reconnection probability, re-
connection time, and a number of packets. The proposed scheme
provides lower reconnection time and route recovery mechanism
but again it incurs the overhead problem.

3.1.1.4. Objective function. The OF specifies how the nodes pick
and optimize routes within an RPL instance. The OF is used for
the selection of a DODAG to join, the rank of each node within the
DODAG, an ordered list of parents in the DODAG, and to select and
optimize routes. Contiki OS by default supports OF. This section
describes OF-related work.

The MRHOF uses ETX to make the network more reliable; how-
ever, it induces high routing latency. Kamgueu et al. [57] designed
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and implemented a new RPL OF by combining several metrics
to optimize the network performance. This was the first work to
obtain a unique value using a fuzzy inference system tomerge ETX,
delay, and the nodes’ remaining power. They evaluated the pro-
posed scheme using a testbed. The results show that the proposed
approach performs better than the traditional ETX-based [58] rout-
ing in terms of packet loss, routing stability, energy efficiency, and
end-to-end delay. However, this work lacks multiple traffic flow
with different quality of service (QoS) requirements.

Belghachi and Feham [59] proposed an OF-based ant colony
optimization (ACO) [60]. First, they provided the mathematical
analysis and later verified it using simulations. They used energy-
and delay-aware routing metrics to make RPL more energy ef-
ficient. Simulation results showed improvement in energy effi-
ciency, and as a result increased network lifetime. Further, the pro-
posed method can achieve improved transmission precision and
decrement in end-to-end delay in comparisonwith the ContikiRPL.
However, it requires additional verification in a realistic testbed
scenario.

A queue-state-based algorithm is proposed for the IoT net-
work [61]. The algorithm is designed that utilize packet loss alert
and then select parent based on it. They used 24 nodes in Cooja
simulation. The algorithm achieves 47.1% and 75.0% lower packet
loss ratios compared with QU-RPL and RPL with OF0. The testbed
verification is required to understand the proposed solution in
detail. Shakya et al. proposed smart energy efficient objective
function [62]. It combined electricity, gas, and water smart meter
meshed network using open IEEE/IETF protocols in line with aWi-
SUN IoT solution for smart metering and utility networks. The per-
formance is measured in terms of energy efficiency and network
lifetime. Simulation results show that up to 27% improvement is at-
tained in the network lifetime. Although simulation-based results
show improved energy consumption, however, for results that are
more realistic, we need to utilize more nodes in the simulation
environment. Design and analysis of RPL objective functions for
multi-gateway ad-hoc low-power and lossy networks are studied
by Muhammad et al. [63]. They utilized 75 TelosB nodes. The
result shows 25% higher PDR, however, the total number of control
packet transmissions is 95% higher for the available bandwidth-
based protocol compared to the other protocols.

3.1.1.5. Trickle. The Trickle timer algorithm is used to control the
construction and updating of DODAG. The DODAG contains infor-
mation about how to forward the information received by every
node. The Trickle controls the injection of routing traffic in the form
of DIOs messages. Further, it also specifies the node listen time
for new information and how often it sends out new information
to its neighbors. This section outlines previous work related to
Trickle. Benson and Kinicki [64] evaluated RPL comprehensively
under different network topologies and node densities. They vary
the RPL parameters and Trickle algorithm to evaluate its perfor-
mance. Further, they focused on the Trickle timer algorithm to
verify the number of routing packets generated for each node in the
network. They ran300distinctive simulation tests for almost 400h.
They use four variants of Trickle; basic Trickle algorithm [6], opti-
mized Trickle (opt-Trickle) [65], enhanced Trickle (E-Trickle) [66]
and modified E-Trickle (ME-Trickle). All variants are sensitive to
changes in configuration and network density. The results did not
reveal a clearly dominant variant. However, ME-Trickle performed
well for a lower number of hops in terms of PDR and lower
setup time. Further, ME-Trickle performance degrades with the
increasing number of hops. Therefore, an optimization is desirable
for ME-Trickle to perform well with any number of hops. Further
evaluation using a testbed, by varying packet reception probability,
and with mobility is required.

Ghaleb et al. [67] proposed Trickle-Plus to enhance the Trickle
algorithm to improve network convergence time and reduce

power consumption. The simulation results show a reduction in
network convergence time with a slightly increased power con-
sumption or traffic overhead as compared with the Trickle algo-
rithm. Nevertheless, it is just a preliminary result and requires
testbed evaluation. Further, they evaluated the performance with
a fixed redundancy value and, hence, it requires validation by
varying redundancy values.

Yassein et al. [68] presented a dynamic Trickle timer algorithm
to cater to a listen-only-period problem. They verified the pro-
posed method using simulations. The results indicate an improve-
ment in overall network convergence time and energy consump-
tion. There was no significant improvement in PDR. The proposed
scheme requires a testbed evaluation. Further, it needs to be eval-
uated in different network densities and topologies. Moreover, it
requires verification with multiple RPL OFs.

Trickle timer is one of the major components of RPL parent
selection mechanism, Muneer et al. [69] proposed Trickle timer
strategy for IoT devices. They evaluated a network with different
network densities (20, 40, 60, 80) using the simulation experi-
ments. The performance is analyzed through packet delivery ratio
(PDR), the convergence time, and the power consumption. The
result shows 35% less convergence time in 20 nodes scenario,
62% less convergence time in 40 nodes, and about and when the
network is made up of 60 nodes, around 70% less convergence
time is consumed. Similarly, 76% less time when there are 80
nodes. Studying this algorithm in testbed environment would be
an interesting future research direction.

Table 4 outlines ContikiRPL protocols analysis and future re-
search directions.

3.1.2. ContikiRPL multicast
Network layer multicast forwarding provides the functionality

of a one-to-many communications model. The services such as
service discovery and network management use the multicast
functionality. Themulticast forwardingwith trickle algorithm pro-
vides IPv6 multicast. It does not rely on topology information.
Further, it uses the Trickle algorithm to control the number of
packet exchanges and to avoid flooding.

3.1.2.1. Statelessmulticast RPL forwarding. OikonomouandPhillips
[73] presented a stateless multicast RPL forwarding (SMRF) algo-
rithm. SMRF takes advantage of the basic RPL construct, DODAG,
and populated routing tables to perform multicast forwarding
without any further control messages. They compared it with
Trickle multicast (TM) [74] using simulations. TM is highly suscep-
tible to changes inminimum interval (Imin) timer value and results
in unpredictable performance and energy consumption. Therefore,
SMRF copes with these issues and is faster and more energy effi-
cient than the TM. SMRFmakesmulticast groups of data-interested
nodes and forwards data to them instead of forwarding datagrams
to all nodes. It does not have any control message overhead as
it uses RPL parent information and multicast group information.
Through simulations, it is shown that SMRF delivers packets more
efficiently in terms of time and energy consumption than the
TM. However, the optimal Imin is an open issue and it depends
on an underlying duty cycling algorithm. Moreover, it requires
investigation of the number of out of order packets arrival per
hop basis, performance in dense networks, and testbed evaluation.
Oikonomou et al. [75] extended SMRF for IPv6-based WSNs. They
performed simulations using a testbed topologywith 21 nodes and
11 motes. They considered PDR, end-to-end delay, out-of-order
datagram delivery ratio, and energy consumption. By keeping Imin
values low in the scenarios without employing duty cycling, better
performance is achieved. However, in a realistic scenariowith duty
cycling, the value of Imin should be higher than the channel check
interval (CCI) to deliver more packets in a shorter time. Higher
Imin values give optimal performance and lower Imin value results
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Table 4
ContikiRPL protocols analysis and future research directions.

Citation Mathematical
analysis

Simulation Testbed Size of
study

Performance metrics Protocols used Future research directions

[31] – ✔ ✔ 41/13 Power efficiency,
Implementation complexity

ContikiRPL Testbed verification on dense
network

[33] – ✔ – 200 Time to, find the first src-dst
pair, complete convergence,
achieve complete stable
network

ContikiRPL PA architecture
implementation and testbed
validation

[34] – ✔ ✔ 100/90 Packet loss ratio, End-to-end
delay, Neighbor table, Link
quality estimation, Energy
consumption

RPLc, RPLcs, RPLca, RPLca+ Use network coding,
opportunistic transmissions,
and data compression in
conjunction with RPL to
increase PDR

[35] – – – – – – Requires implementation and
validation using testbed and
simulation

[36] – ✔ – 20,40,60 Number of receive and lost
packets, number of hops,
Rtmetric, ETX and power
consumption

ContikiRPL with static and
mobile nodes

Needs testbed evaluation and
validation using reference
point group mobility (RPGM),
nomadic and self-similar least
action walk

[42] – ✔ – 164 Throughput, end-to-end
latency, energy consumption

RT-SSCF, RT-RPL, GT-SSCF,
GT-RPL

Requires testbed evaluation,
proposal scalability, proposal
performance in case of sink
failure

[43] ✔ ✔ – 25 Individual and total network
energy consumption, PDR

ContikiRPL-ETX, e2eEnergy,
ETX+single Energy,
ETX+e2eEnergy

Testbed evaluation and
validation in dense network
topology

[51] – ✔ – 40 Packet reception ratio,
Number of parent changes

TinyRPL Testbed evaluation and by
using different RPL objective
functions

[52] – – – – – – Requires implementation,
testing and validation to fully
realize its effectiveness.

[53] – – ✔ 6 Fallback parent, DIO timer
and fallback parent, route
lifetime, fallback sibling,
greediness of nodes, poisoned
tree, rebuild build memory

ContikiRPL Realistic and dense network
testbed validation

[56] ✔ ✔ – 31 Packet loss, average energy
consumption, lifetime of the
network

ContikiRPL, Pro-RPL Testbed evaluation, identify
the mobility patterns and
probabilistic trajectory of
floating DODAGS node,
inclusion of dynamic
distribution of load in pro-RPL

[57] ✔ – ✔ 28 Packet loss ratio, Routing
stability, Average remaining
power

ContikiRPL-ETX, Fuzzy Lacks multiple traffic flow
with different QoS
requirements

[59] ✔ ✔ – 20 Energy efficiency,
Transmission performance,
End-to-End delay

ContikiRPL-ETX, QoSRPL Requires additional
verification in realistic
testbed scenario

[64] – ✔ – 40 Network convergence time,
power consumption

ContikiRPL with original,
optimized, E, ME Trickle

Testbed evaluation,
ME-Trickle optimization,
assessment by varying PRR
and with mobility

[67] – ✔ – 50 Network convergence time,
number of sent control traffic
messages, Power
consumption

ContikiRPL with trickle 4, 14
and plus

Requires testbed evaluation,
requires validation by varying
redundancy values

[68] – ✔ – 20,40 Convergence time, Power
consumption, PDR

ContikiRPL-Standard,
Dynamic

evaluation in different
network topologies, with
multiple RPL objective
function, testbed

(continued on next page)

in more out-of-order packet delivery and more packet loss. SMRF
has low complexity and requires lower memory. Hence, it is more
suitable to many IoT constrained devices. However, it requires
dense realistic simulation and testbed evaluation.

(i) Implicit acknowledgment SMRF: Tharatipayakul et al. [76]
proposed iACK, an implicit acknowledgment in SMRF, to make
transmission or delivery more reliable. TM uses retransmissions
that result in high delivery but it increases delay and congestion.
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Table 4 (continued)

Citation Mathematical
analysis

Simulation Testbed Size of
study

Performance metrics Protocols used Future research directions

[44] – – ✔ 31 Downward and upward link
quality

ContikiRPL, DT-RPL Mobility support

[45] – ✔ – 40 Energy consumption ContikiRPL, RAME Testbed verification

[46] ✔ ✔ – 25 Packet loss ratio, End-to-end
delay, Energy consumption

ContikiRPL, OHCA,
DCCC6,QU-RPL

Testbed verification

[47] – ✔ – 20 No. of parent changes, Energy
consumption

ContikiRPLwith HOP, ETX,
ELT, HYBRID

Reduce control overhead

[48] – ✔ – 7 Reconnection probability,
Reconnection time at
different DIS intervals, DIO
transmission at various
trickle timers.

ContikiRPL Energy consumption
validation and comparison

[70] – ✔ – 14 Energy consumption,
Handover delay, Packet
delivery Ratio The

ContikiRPL, MRPL, EC-MRPL Reduce power consumption

[49] ✔ ✔ ✔ 100/100 Packet loss rate, End–end
delay, Communication
Overhead

ContikiRPL, BRPL Reduce energy consumption

[50] – ✔ – 25 Packet delivery ratio, Energy
consumption, Duty cycle

ContikiRPL Comparison with previous
studies

[71] – ✔ – 26 Packet delivery ratio, Energy
consumption

ContikiRPL, mRPL, D-RPL Testbed verification

[72] ✔ ✔ – 50 Power consumption, Packet
loss rate

ContikiRPL, IRPL Testbed verification

[61] – ✔ – 24 Packet loss ratio, Number of
DIO messages

ContikiRPL, QU-RPL, QSPS Testbed verification

[62] – ✔ – 18 Energy consumption ContikiRPL with MRHOF and
SEEOF

Dense network evaluation

[63] – ✔ – 75 Hop counts, Packet delivery
ratio, Delay, Total
retransmission

ConntikiRPL Dense network evaluation

[69] – ✔ – 20, 40,
60, 80

Power consumption,
Convergence time

ContikiRPL with standard and
elastic TRICKLE

Testbed verification

SMRF is fast but lacks reliability. iACK treats the child nodes re-
broadcast as an implicit acknowledgment. They simulated it by
using a 20-node topology and compared it with TM and SMRF.
Simulation results showed that iACK increases the PDR and has
a lower delay than the TM but a slightly higher delay than the
SMRF. iACK can be adjusted to select the tradeoff between delay
and PDR. Moreover, it requires more memory. Further, it requires
performance evaluationwith simulations under realistic anddense
network topology.

3.1.2.2. Extended SMRF. The sending limitation of SMRF is due to
the lack of complete visibility of DODAG at the intermediate nodes.
Therefore, AbdelFadeel and Elsayed [77] introduced ESMRF, an ex-
tension to SMRF, to support a multicast-on-behalf scheme, which
allows the nodes to send multicast traffic up and down the RPL
tree. The multicast-on-behalf scheme allows intermediate nodes
within the DODAG to send themulticast traffic to the root. Further,
it retains low memory overhead. They use simulation topology
with 20 nodes to compare ESMRF with TM and SMRF. They use
network PDR and end-to-end delay as performance metrics. Sim-
ulation results show that if the root of RPL is the multicast source,
then SMRF and ESMRF show the same performance. However,
ESMRF performs better in cases when the highest rank node is
the source. In a random topology, ESMRF performs best among
all the compared protocols. The performance with different traffic
patterns when the number of nodes and hops increase needs to be
demonstrated.

3.1.2.3. Bidirectional multicast RPL forwarding. SMRF lacks dy-
namic group registrations, downwards forwarding, and additional
delay to mitigate the collisions. Henceforth, Lorente et al. [78]

proposed a new multicast protocol called bidirectional multicast
RPL forwarding (BMRF). BMRF offers configurable forwarding, bidi-
rectionality, delivery disorder avoidance, multi-sourcing, and dy-
namic group registration. They evaluate BMRF using a 51-node
simulation topology and compared it with SMRF. They calculated
PDR, the number of packet transmissions, the number of radio
transmissions, energy consumption per delivered packet, and end-
to-end delay. Experimental results show that BMRF mixed mode
gives the best result for link layer broadcast and unicast. However,
in a random topology, it gives good results for channel check rates
higher than 8 Hz. BMRF unicast provides the best reliability but at
the expense of higher delay and energy consumption. In general,
BMRF takes more memory space, which is sometimes crucial for
IoT constrained devices. Moreover, comparison should be made
with ESMRF. It further requires a testbed evaluation to confirm the
results.

Table 5 provides a summary of ContikiRPL multicast proposal
analysis and future research directions.

3.1.3. RPL host configuration
The hierarchical structure addressing allows prefix aggregation,

which enables contiguous IPv6 addresses to be aggregated into
a single prefix. However, it introduces the address space insuf-
ficiency problem. Therefore, instead of using prefixes, Peres and
Goussevskaia [79] proposed MHCL, a multihop host configuration
strategy as a RPL subroutine to assign IPv6 addresses to nodes.
The goal was to study the top-down multihop host configuration.
They evaluated the performance of MHCL through simulation in
a topology with 169 nodes. MHCL is based on cycle-free network
structures to generate and assign the IPv6 addresses. Their aim
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Table 5
ContikiRPL multicast proposal analysis and future research directions.

Citation Mathematical
analysis

Simulation Testbed Size of
study

Performance metrics Protocols used Future directions

[73] – ✔ – 21 Packet delivery ratio, end-to-end
delay, energy consumption

SMRF, TM Optimal Imin, out of order packets
arrival per hop basis, performance
in dense network and testbed
evaluation

[75] – ✔ ✔ 21/11 Packet delivery ratio, End to end
delay, Out of order arrivals, energy
consumption, code sizes, memory
requirements

SMRF, TM Requires dense realistic simulation
and test bed evaluation

[76] – ✔ – 20 Data receive ratio, packet delay,
packet receive count

iACK, SMRF, TM Requires evaluation in dense,
realistic simulation and testbed
topology, evaluation of memory
usage in different network
topologies.

[77] – ✔ – 20 Network packet delivery ratio,
end-to-end delay

ESMRF, SMRF, TM Requires further evaluation with
denser and realistic simulation and
testbed topology, performance with
different traffic pattern with
increasing number of nodes and
hops

[78] ✔ ✔ – 51 PDR, number of packet
transmissions, number of radio
transmissions, energy consumption
per delivered packet, end-to-end
delay

BMRF, SMRF Code optimization, comparison
with ESMRF, testbed evaluation

Table 6
ContikiRPL host configuration proposal analysis and future research directions.

Citation Mathematical analysis Simulation Testbed Size of study Performance metrics Protocols used Future directions

[79] ✔ ✔ – 169 Network setup time, Number
of DIO messages, Number of
DAO messages, Addressing
success rate, Top-down
routing success rate

Contiki-RPL, MHCL Requires dense network and
testbed evaluation

was to keep the memory footprint low and achieve efficient, re-
liable top-down data traffic. They proposed two address allocation
algorithms: greedy (MHCL-G) and aggregation (MHCL-A). MHCL-
G assigns the addresses from root to leaves, whereas in MHCL-A,
nodes compute or identify their descendants and send this to the
root. Afterwards, the root allocates the address range according
to the size of the subtree of each child node. Each node, after
receiving the range from its parent node, assigns IPv6 addresses to
its children. The simulation results show that it ismemory efficient
and takes less time to adjust according to the network dynamics.
Further, the number of DIO control messages is the same as those
of RPL and there are significantly fewer DAO messages than RPL.
In addition, in MHCL the downward PDR is higher than in the
RPL protocol in all the simulated network scenarios. This study
requires dense network testing and a testbed evaluation. Table 6
summarizes the RPL host configuration protocol.

3.1.4. RPL routing attacks
The outcome of routing attacks results in one or all three possi-

ble actions: packet drop, packet alteration, and routing disruption.
A malicious node may use different techniques to launch a par-
ticular attack; however, it results in any or all of aforementioned
actions. Therefore, attack avoidance methods should be more ef-
fective if they consider the outcome of attacks rather than the
attack feature or characteristics.

3.1.4.1. Numerous routing attacks. Wallgren et al. [80] presented
a study of routing attacks and countermeasures in RPL. They
also proposed and implemented a heartbeat protocol to cater to
selective-forwarding attacks [81,82]. They used a simulation topol-
ogy with 25 nodes. The study shows that RPL is susceptible to
selective-forwarding, sinkhole, HELLO flood [83], Wormhole [84],

Clone ID [85–87], and Sybil [88] attacks. The authors proposed
IDS placement in the network to mitigate these attacks. More-
over, the proposed heartbeat protocol performs well for selective-
forwarding attack and is energy efficient. However, the heartbeat
protocol is fully effective if it is used in conjunction with IPsec and
ESP. Thus, it eventually increases the network complexity. Further,
this study requires a testbed evaluation.

Pongle and Chavan [89] proposed real-time intrusion and
wormhole detection in IoT. RPL is prone to wormhole attacks. The
purpose of a wormhole attack is to disrupt the network and traffic
flow. They used simulation topologies with 8, 16, and 24 nodes.
The authors’ lightweight IDS successfully detected two types of
wormhole attacks: packet relay and encapsulation. The proposed
IDS required location information to efficiently detect the worm-
hole attack. This location information required less overhead and
resulted in a high true-positive detection rate. Moreover, IDS is
memory efficient and achieved a 94% detection rate. It requires
an extension to make it generalized IDS. Following this, it requires
evaluation to verify it against Sybil, clone ID, RPL version number,
and local repair attacks.

3.1.4.2. RPL version number. Version number is typically used to
ensure loop- and error-free topology. An attacker can modify the
number version associated with the topology and resulting in
the entire routing topology being rebuilt. This rebuilding of the
topology results in increased overhead, deterioration of energy
resources, unavailability of channel, and sometimes loops in the
routing topology. This section highlights the literature related to
version number attack.

Mayzaud et al. [90] studied the effects of version number attack
on RPL. The RPL uses the version number to control the global
repair process. Every DIO message includes the version number
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and the receiving nodes recalculate their rank and update their
versionnumber. The authors used a grid topologywith 20nodes for
simulation. The simulation results revealed that version number
attacks significantly increase the control overhead. Consequently,
they reduce the PDR and double the end-to-end delay. The position
of the attacker also plays a crucial role in increasing the overhead:
highest overhead occurs when the attacker is far from the root.
Hence, researchers should focus on techniques to secure the RPL
version number. However, as IoT devices are constrained, these
mitigation techniques need to be very simple and memory effi-
cient.Moreover, this researchwork requires further evaluation and
verification in a realistic dense network topology.

Aris et al. [91] studied RPL version number attacks in detail.
They used a network topology with 44 nodes to study the attacks.
The network contains static and mobile nodes. The results show
that control packet overhead is highly related to the attacker’s lo-
cation. However, the attacker’s location only has a minor effect on
the packet delay and power consumption. The analysis of attacking
probability, p, shows that the network degrades with increasing
p. However, it also increases the chances of detecting an attacker.
The attacker needs to use a low value of p to remain undetected.
The mobile attacker nodes have the same impact on the network
as the attacker nodes that are far from the root. This research study
lacks the solutions to mitigate these attacks.

3.1.4.3. DODAG inconsistency. The RPL uses IPv6 header options
to keep track of topological inconsistencies. A malicious node or
attacker canmanipulate the IPv6 header options to launch DODAG
inconsistency attack. This can lead to control overhead and, as
a result, wasting of precious energy resources of IoT resource-
constrained devices. Further, an attacker can use DODAG attack by
sending an appended packet to next hop neighbors to force them
to drop these packets and this can result in a black hole attack. The
black hole attack leads to the denial of service attacks.

Mayzaud et al. [92] proposed an adaptive threshold (AT) mech-
anism to mitigate DODAG inconsistency attacks. The AT relies
on a set of parameters and can lead to inadequate optimization.
Their evaluation used a five-node chain and ten-node random
network topology. They extended the AT to derive the appropri-
ate threshold for counteracting DODAG inconsistency attacks. The
simulation results indicated that the AT approach performs better
than the default RPL with the fixed threshold. The AT approach
mitigates blackhole DODAG inconsistency attack and, hence, it
avoids channel congestion and achieves high resource utilization.
The AT relies on a set of parameters and it can lead to inadequate
optimization. Therefore, the fully dynamic AT is calculated by using
network characteristics. The dynamic AT performs better than the
AT because AT requires pre-deployment constants that need to
be calculated empirically. In contrast, the dynamic AT derives all
parameters from the network neighborhood size. In the case of
an aggressive approach, AT and dynamic AT show similar results.
However, in all other scenarios the dynamic AT gives a better result
than the AT. Their proposed approaches reduce overhead by 20%–
50% and energy by 50%. Further, in the case of blackhole attacks,
the dynamic AT achieves 99% PDR in comparison with 33% for the
default RPL. The network size for the case study was small for an
IoT scenario; therefore, it requires a dense network evaluation.
Moreover, the proposed approaches also require verification using
a testbed.

Table 7 exhibits ContikiRPL routing attacks summary and future
research direction.

3.2. Lightweight on-demand ad-hoc distance vector routing protocol

6LoWPAN is a low-power wireless mesh network where every
node has its own IPv6 address, allowing it to connect directly to

the Internet using open standards. The 6LoWPAN lightweight on-
demand ad-hoc distance vector routing protocol — next generation
(LOADng) is a routing protocol for low-power WSNs. LOADng is
a simplified on-demand reactive routing protocol derived from
the AODV routing protocol, and intended for use in IEEE 802.15.4
devices in 6LoWPANs and LLNs. The operation of LOADng is based
on multi-hop routing between devices to establish and maintain
on-demand routes in 6LoWPANs [93]. The RPL is a DV routing
protocol that states how to make a DODAG with a defined OF and
a set of metrics and constraints. The RPL routing protocol uses a
proactive approach. The performance of RPL and LOADng routing
protocols was compared in a home automation system [94] using
the Contiki OS and thewell-known simulator Cooja [95]. RPL shows
shorter delay, less control overhead, and lower memory require-
ment than the LOADng routing protocol. The main limitation of
the LOADng routing protocol is the delay in the route discovery
process. During the route discovery process, outgoing packets are
buffered, which may cause losses in memory-constrained devices.
Moreover, flooding is highly energy inefficient; therefore, nodes
may suffer from energy depletion. Another issue is related to the
collisions of control messages due to flooding, which may lead to
unnecessary retransmissions.

To extend the network lifetime and to optimize traffic over
6LoWPAN resources, the design of an efficient routing protocol is
crucial. Yonga et al. [96] proposed an energy balancing adaptive
routing protocol (EBAR). In the proposed protocol, they considered
the dynamic traffic and constrained energy in 6LoWPAN. EBAR
adaptively updates paths between different source–destination
pairs and balances the energy in 6LoWPAN. Their results show that
EBAR improves 6LoWPAN performance compared with LOAD and
RPL. The main limitation of RPL is the traffic congestion near the
root node of DODAG. Furthermore, RPL provides the longer paths
than the available shorter paths.

3.3. Opportunistic routing

Most of the IoT devices with the limited resources employ the
Contiki OS and support a wide variety of routing protocols. As
compared with conventional routing protocols for conventional
networks, routing protocols for the IoT devices have been designed
with consideration of the limited energy and other resources. The
concept of opportunistic routing has been used to perform energy-
efficient path planning operation of the IoT devices. The oppor-
tunistic path planning algorithms have already been extensively
employed by the IoT devices [97,98]. The Opportunistic routing
protocols supporting the Contiki OS for IoT devices have also been
designed as an extension to RPL.

3.3.1. Opportunistic RPL
The RPL is considered a standard path planning protocol for

low-power networks supporting tiny IPv6. However, the scalabil-
ity of the RPL has been enhanced with the introduction of op-
portunistic routing. As discussed in [99], the Opportunistic RPL
(ORPL) has been developed by using the Contiki OS. In ORPL, the
tree topology of the RPL has been extended in conjunction with
opportunistic routing. The ORPL has been implemented in Contiki
OS and various features such as ContikiMACwithmany-to-one and
one-to-one traffic settings have been analyzed. The ORPL scales
well to networks with a large number of nodes, and information
in this large network is propagated using the bitmaps and bloom
filters. Duquennoy and Landsiedel [100] have studied the ORPL
with Contiki OS for networks with irregular traffic patterns. The
upward and downward routing of data helps in supporting the
irregular traffic patterns. Usually, in ORPL, traffic is routed upward
along the gradient, and in downward routing, it goes away from the
root and then ultimately leads to the destination. This upward and
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Table 7
ContikiRPL routing attacks proposal analysis and future research directions.

Citation Mathematical
analysis

Simulation Testbed Size of study Performance metrics Attacks studied Future directions

[80] – ✔ – 25 Control overhead, Energy, Power Selective forwarding, Sinkhole,
Hello flood, wormhole, clone
ID, Sybil, Intrusion detection
system.

Reduce network complexity.
Requires testbed evaluation.

[81] – ✔ – 8, 16, 24 True positive detection rate, Energy
consumption, Energy overhead for
various events, Packet overhead,
Memory Consumption.

Intrusion and wormhole
detection

Requires testbed evaluation,
extension to make it a
generalize IDS

[90] – ✔ – 20 Average incoming and outgoing
packet overhead, per node outgoing
packet overhead, average
end-to-end delay, total number of
loops detected per node, total
number of inconsistencies detected
per node.

RPL version Number Simple and memory efficient
mitigation techniques,
Realistic dense network and
testbed evaluation

[91] – ✔ – 44 Packet delivery ratio, Average
delay, Control packet overhead,
Average power consumption

RPL version number Mitigation techniques and
testbed evaluation

[92] ✔ ✔ – 5, 10 Per node outgoing packet overhead,
Total control message overhead by
per node, Fixed and Adaptive
threshold time-lines, Fixed and
dynamic threshold time-lines,
Delivery ratio, Energy Consumption
for adaptive and dynamic
threshold, Energy consumption for
control message overhead.

DODAG inconsistency Requires dense network and
testbed evaluation

downward movement follows the ORPL routes data traffic using
DODAG. This traffic pattern is then tested with Indriya testbed
running the Contiki OS.

To achieve load balancing during the sensing operation, the
tiny sensing nodes also use the ORPL with Contiki OS [101]. In
this study, the ORPL load balance (ORPL-LB) has been proposed to
perform the load balancing and to avoid the network congestion.
The ORPL-LB has been implemented using the Contiki OS.With the
help ofwake-up intervals, analysis has shown that the ORPL-LB not
only performs the load balancing but can also reduce the duty cycle
of the worst nodes. The proposed scheme shows improvement
in PDR and throughput as compared with other state-of-the-art
schemes.

Smart grids have gained much attention as a smart solution for
existing power grids [102,103]. Contiki OS with ORPL performs the
energy-efficient routing for the advanced metering infrastructure
(AMI). AMI is a smart meter for transporting the data to the service
provider. Gormus et al. [104], have used the ORPL as the routing
solution for efficiently performing the routing decisions for the
AMI. TheContiki OSwithORPL in this distributednetwork topology
has been designed for the mesh networks. In addition to the ORPL,
the extended version of the ORPLx has also been proposed and
tested with Contiki OS for the AMI tominimize the retransmission.

The proposed ORPL shows the improvement in terms of scala-
bility and throughput as a smart metering solution. The reliability
of the AMI networks has been improved further with the help
of the ORPL in [105]. This Contiki OS supportive routing protocol
selects the multiple relays to efficiently transmit the date to the
destination nodes. As compared with the other existing routing
approaches for the AMI networks, the ORPL requires less energy
and memory and can work efficiently while conserving the scarce
resources. ORPL has also been used to increase the utilization of the
network resources for the AMI networks in [106]. To conserve the
network resources and to improve the network performance, the
anycast routing approach with ORPL has been tested with Contiki
OS for AMI. This anycast routing approach also reduces the traffic
and works well with limited resources for the mesh networks. The

performance of theORPLwith the AMI has been comparedwith the
RPL, and the proposed ORPL provides better performance in terms
of throughput and link success rate.

Table 8 lists opportunistic RPL proposal analysis and future
research direction.

3.3.2. Context-aware routing
In contrast to the ORPL, context-aware routing has also been

well-supported by the Contiki OS in the IoT devices. When the
context-aware routing [107,108] is implemented using the Contiki
OS, the routing operation in the IoT seems to conservemore energy
and can also support the delay sensitive traffic. The state-of-the-art
context-aware routing schemes supported by the Contiki OS are
described as follows.

Context-aware opportunistic resource-based routing protocol
(CORB) [109] has been proposed for the WSNs that can support
the intermittent connectivity of low-power tiny sensing nodes.
Context-aware routing is usually used for mobile nodes, while
the CORB has been specifically designed for stationary sensing
nodes. The scarce resources and the context features are taken into
consideration by the CORB for the intermittent connectivity. The
proposed scheme with Contiki OS has been compared with the
ripple routing protocol (RRP), and shows improved performance
in terms of throughput and energy conservation.

As compared with CORB, which takes into consideration
the stationary sensing nodes, the sensor context-aware routing
(SCAR) [110] protocol has been designed for mobile nodes. The
operation of the SCAR appears to be more efficient and smooth
with the Contiki OS. This context-aware routing scheme has been
specially designed for delay-sensitive traffic such as multimedia
applications. To improve the reliability, multi-path routing has
been introduced in the SCAR protocol that increases not just the re-
liability but also robustness for the IoT devices. The SCAR protocol
has been specifically tested for its efficient routing operation with
the Contiki OS. Pasztor et al. [111] have implemented the SCARpro-
tocol in the Contiki OS. To efficiently transmit the delay-sensitive
and time-critical data without much delay, the routing operation
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Table 8
Opportunistic RPL proposal analysis and future research directions.

Citation Mathematical
analysis

Simulation Testbed Size of study Performance metrics Protocols
used

Future directions

[99] – – ✔ Min = 3 nodes
Max = 135 nodes

PDR
Duty cycle
Latency

ORPL
RPL
ORW
CTP
LWB

Impact on different
applications such as smart
cities and health care can be
investigated

[100] – – ✔ 137 nodes Latency
Duty cycle

ORPL Trade-off between efficiency
and correctness of the
topology needs to investigate

[101] – – ✔ 93 nodes PDR
Duty cycle
Latency
Average wake-up interval
Network lifetime

ORPL
RPL

Load balancing with different
traffics

[102] – (Saturated
and non-
saturated
Traffic)

– 30 nodes
70 nodes

PDR
number of retransmission
Cooperative overheads

ORPL
RPL

Performance of ORPL in duty
cycled mesh networks.
Scheduling mechanisms that
can reduce contention and
interference within the AMI
mesh networks.

should be more efficient and reliable. Therefore, the SCAR proto-
col has been tested extensively using the Contiki OS prior to its
implementation in the real scenarios. The SCAR protocol shows the
same functionality and performance with the theoretical analysis.
Another demonstration of SCAR protocol functioning with Contiki
OS has been discussed in [112]. For the evaluation purpose, the T-
mote Sky sensing nodes with the Contiki OS have been used, and
the data gathering and routing operation of this protocol have been
analyzed. The main contribution of this real-time implementation
of the SCAR protocol with the Contiki OS is to find the right carrier
for the transmission of the data to the sink node. Usually, the
selection of the sink depends on the buffer size of the sensing
nodes, connectivity, and the residual energy of the sensing nodes.

The SCAR protocol has been used extensively for the tiny mo-
bile sensor devices as discussed in [113]. The routing metrics of
the SCAR protocol such as the mobility patterns and the residual
energy of the tiny low-powered sensing nodes have been evaluated
by implementing the SCAR protocol in the Contiki OS. The routing
protocolswith the Contiki OS have been implemented in the COOJA
simulator. The SCAR protocol, in this case, has been comparedwith
respect to the random choice-based dissemination.

3.4. OPPCAST routing protocol

Low-power wireless devices suffer greatly from cross-techno-
logy interference (CTI), e.g., WiFi, Bluetooth, and microwaves. CTI
reduces the signal-to-interference-plus-noise ratio (SINR) and it
causes high bit-error rates [114]. Mobashir [115] studied CTI in or-
ganized (educational institution, library, corporate offices) and un-
organized environments (shopping malls, residential complexes).
Mobashir proposed a synchronization mechanism, SYNCAST, and
data-collection protocol, OPPCAST.

It is a challenge to maintain synchronization among syn-
chronous transmitters because of software and hardware propaga-
tion delay. This may lead to the problem in scalability. Therefore,
SYNCAST provide synchronization for dense networks with a large
number of concurrent transmitters. Results in [115] show the
reliability of SYNCAST in contrast to Glossy [116]. The OPPCAST
routing protocol provides a solution to exploit spatial–temporal
and channel diversity to achieve robust data collection in a dense
urban environment. Mobashir implemented OPPCAST on Contiki
OS and showed that it is highly robust, achieved a reliability of at
least 98.55% during 255 h of experiments in four different urban
deployments suffering from a large amount of unplanned CTI.

3.5. IPv6 neighbor discovery

Neighbor discovery (ND) defines the methods for addressing
router, prefix, and parameter discovery, address auto-configu-
ration, address resolution, neighbor unreachability detection, and
duplicate address detection. The ND protocol uses the IPv6 pro-
tocol. However, ND uses multicast transmissions which make it
inefficient for 6LoWPANs. Recently, the Internet Engineering Task
Force (IETF) [117] proposed some amendments to the ND protocol
to make it more suitable for 6LoWPANs. Seliem et al. [118] im-
plemented and evaluated the proposed ND protocol as compared
with the basic IPv6 ND protocol. The authors implemented the op-
timized ND protocol over Contiki OS version 2.6. Themain features
of optimization are router solicitation (RS) or router advertisement
(RA) and neighbor solicitation (NS) or neighbor advertisement
(NA). TheRS/RAmessage optimization aims to reduce the overhead
by avoiding the use of multicast flooding. However, the NS/NA
message optimization focuses the interfaces between hosts and
routers. The results show that the optimizedNDprotocol transmits
fewer RS/RA messages as compared with the basic ND protocol.

3.6. Secure network (routing) protocols

Secure routing protects the packet from deliberate drops and
alterations and unauthorized access [119]. Moreover, it aims to
protect the routing infrastructure from various routing attacks.
Confidentiality, authenticity, and access control mechanisms are
proposed to secure the packet. However, thesemechanisms cannot
cope with packet drop attacks and attacks against the routing
structure [120,121]. Hence, we analyze security aspects of the
proposed schemes based on the above-mentioned attacks (see
Fig. 4). Moreover, a limited capability of IoT devices in memory,
energy, and computing power and Contiki OS puts restrictions on
algorithms and protocols [122]. Hence, we consider these factors
to discuss and present existing secure network protocols.

One of themost important researchworks is presented in [123],
which is called ContikiSec. ContikiSec provides confidentiality,
authentication, and integrity, which can be used selectively de-
pending on the required security level in the network. To provide
such security properties, the authors evaluate and compare exist-
ing security mechanisms in the modular sensor board (MSB-430)
platform under Contiki OS. Security mechanisms are evaluated
in terms of security level, memory usage, and energy consump-
tion. ContikiSecworks in threemodes: ContikiSec-Enc, ContikiSec-
Auth, and ContikiSec-AE. ContikiSec-Enc provides encryption only,
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Fig. 4. Semantics of attacks against network protocols.

which is based on cipher block chaining–cipher stealing (CBC–
CS) mode of operation with the advanced encryption standard
(AES) [124] as the underlying block cipher. AES is found to be
optimal among Skipjack [125], triple data encryption standard
(3DES) [126], XTEA [127], RC5 [128], and Twofish [129] for con-
fidentiality. ContikiSec-Auth gives more importance to authen-
tication. Hence, AES cipher-based message authentication code
(AES-CMAC) [130] is used for message authentication. Finally,
ContikiSec-AE is designed for applications where the highest level
of security is required. Hence, it provides confidentiality, au-
thentication, and integrity. It uses offset codebook mode (OCB)
mode [131] with AES as the underlying block cipher.

Although ContikiSec provides comprehensive research evalu-
ating different security mechanisms on the MSB-430 platform, it
would give more insight into the evaluation of security mecha-
nisms of resource-constrained environment if it were performed
on different boards. Moreover, the influence of compromised
nodes in a secure network layer is not considered.

In [132], Raza et al. proposed the use of IPsec protocols to
provide end-to-end secure communication in 6LoWPANs. Specif-
ically, they proposed the use of two protocols of IPsec in 6LoW-
PANs for encryption and authentication, which are authentication
header (AH) and encapsulating security payload (ESP). One of
the main contribution of this work is to provide specification of
IPsec for 6LoWPAN including definitions for AH and ESP exten-
sion headers. Moreover, the authors proposed the use of HC13
header compression to keep packet sizes reasonable in 6LoWPANs.
HC13 defines context-aware header compression using IPHC for
IP header compression and NHC for the next header compression.
To evaluate the proposed scheme, it was implemented on Con-
tiki OS. Evaluations were performed in terms of packet overhead,
memory footprint, and energy overhead. Evaluations showed that
AH and ESP fit in a tiny sensor node and they leave space for
other applications. Moreover, it was shown that AES-CBC and AES-
XBCMAC-96 [133] are optimal in terms of processing time and
energy consumption. Although the proposed work contributes to
the research field significantly, it would be better if effects of
implemented mechanisms on routing performance were demon-
strated. Moreover, as in previous work to encrypt the data, AES is
used in this research work. However, key management issues are
not covered in either research work.

As we discussed above, both schemes use AES, in which sender
and receiver should have a symmetric key to encrypt and de-
crypt the data. However, in those research works, key distribu-
tion/exchange is not mentioned. In [134], Raza et al. proposed the
use of elliptic curve cryptography (ECC) [135] as an asymmetric
cryptographic system in the Diffie Hellman key exchange protocol.
Moreover, they proposed a lightweight 6LoWPAN compression
method for Internet Key Exchange version 02 (IKEv2). Currently
RSA [136] is used for key exchange in IKE implementations, which
is not suitable for resource-constrained IoT devices. Hence, the
authors proposed the use of ECC for key exchange. A standardized
ECC algorithm and NIST recommended elliptic curve and prime

numbers were used in the ECC implementation. However, imple-
mentation details are not provided. To reduce the size of IEEE
802.15.4 link layer frames, the IKE header is compressed at the
6LoWPAN layer. The idea is to compress the IKE header along with
UDP payload as it is UDP payload. The compressed IKEv2 header
is recognized by the unique ID bits of 1101. Since the proposed
researchwork was presented in a short paper, the implementation
and description details were omitted.

In [137], Jutvik dealt with implementing some protocols of
IPsec in Contiki OS. Hence, the author attempted to answer the
following question: can IPsec and IKEv2 be implemented within
the current hardware boundaries (in Contiki OS) while still being
interoperable with other Internet hosts? After investigations and
implementations, the answer was yes. Hence, IPsec and IKEv2
can be implemented in Contiki OS while providing interoper-
ability with the vast majority of Internet hosts. As for IPsec ESP
protocols, the following algorithms are implemented: AES-XCBC-
MAC-96y, AES-Counter Mode (AES-CTR), and AES-CBC with 128
bit-key, NULL, 3DES-CBC, and HMACSHA1-96. In IKEv2 protocol
implementation, the authors proposed the use of ECC as in [109],
as it allows using smaller key sizes, without forsaking security.
Overall, this research work contributes greatly to secure routing in
Contiki OS implementing many protocols and algorithms of IPsec
and demonstrating that it is feasible to use IPsec functionalities
under Contiki OS. However, question of redundancy arises such as
the need for a security mechanism in the network layer if security
mechanisms are provided in the transport and data link layers.
This is an important question that should also be answered by
aforementioned research works. Table 9 portrays implemented
and proposed network security mechanisms proposed for Contiki
OS.

In brief, the proposed mechanism to secure network protocols
focused on encryption and authentication mechanisms and their
implementation, as demonstrated by Tables 9 and 10. Moreover,
attacks such as packet drop and routing infrastructure are not
considered in the proposed works. Since research on the secure
network layer in Contiki OS is in an early stage, studies which
focus on the combination of security mechanisms with routing
algorithms have not yet been proposed.

4. Open research issues and recommendations

In this section, we briefly discuss challenges and open research
issues.

ContikiRPL. Comprehensive studies are discussed in the previous
section. The results indicated that there is always a difference
in simulation and testbed outcomes. Thus, simulation requires
further improvement to produce results closer to the testbed. Fur-
ther, it lacks fine-grained timing. Most studies lack evaluation in a
dense network topology to provide a detailed insight into protocol
operation. Hence, it is of utmost importance as IoT constitutes
billions of devices and any performance degradation hampers the
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Table 9
Implemented and proposed security mechanisms to be used in the Contiki network layer.

Citation Scheme Encryption Authentication Implemented device

[123] ContikiSec AES Cipher-based MAC MSB-430
[132] Securing Internet of Things with Lightweight IPsec AES-CBC based on ESP protocol MAC based on AH protocol TmoteSky
[134] Lightweight IKEv2 N/A N/A N/A
[137] IPsec and IKEv2 for the Contiki operating system AES-CBC AES-XCBC-MAC-96 N/A

Table 10
Considered attacks and routing algorithms in the proposed schemes in the Contiki network layer.

Citation Packet alteration Unauthorized packet access Packet drop Routing infrastructure attacks Considered routing algorithm

[123] ✔ ✔ – – –
[132] ✔ ✔ – – –
[135] ✔ ✔ – – –
[137] ✔ ✔ – – –

overall network performance. Many proposals suggest improve-
ment in ContikiRPL; however, the effectiveness of these propos-
als is questionable until they are merged into the main Contiki
OS tree. IoT may comprise many heterogeneous devices running
different OSs and hence interoperability is another major concern.
Extensive research is needed to make the protocols interoperable,
scalable and energy efficient [138]. Recent improvements in IoT
and cloud computing made it practically possible to use it in
many applications such as health care [139] and smart life. The
optimization of route timeouts and global repairs is required to
make it energy efficient. The mobility is another intrinsic problem
and in-depth work is required to identify the mobility patterns
and likely trajectory of floating nodes. To sustain the network
lifetime, further research needs to extend out to include dynamic
distribution of load to prolong the network lifetime. The RPL OF
requires additional research by considering fuzzy logic and ACO
to make it more efficient. Trickle is another key area of research.
It needs further research to reduce the control packet overhead
and network convergence time, subsequently keeping power con-
sumption low and improving energy efficiency.

ContikiRPL multicast. Further research on increasing transmis-
sion reliability, avoiding congestion, and incurring low delay is
required. Moreover, more research is desirable on flexible and
configurable forwarding, bi-directionality, delivery disorder avoid-
ance, multi-sourcing, and dynamic group registration. Memory
scarcity in IoT devices demands memory-efficient multicast pro-
posals.

RPL host configuration. This area requires extensive research to
assign dynamic address allocation with lowmemory footprint and
achieve efficient and reliable top-down, bottom-up data traffic.

RPL routing attacks. ContikiRPL is prone to routing attacks such
as selective forwarding, HELLO flooding, wormholes, clone ID, and
Sybil. Moreover, it is also susceptible to version number attacks
that result in control overhead and consequently increases delay
and decreases PDR. RPL is also vulnerable to DODAG inconsistency
attacks that cause congestion and high resource use. Therefore, IoT
requires extensive research proposals that have to be lightweight
but effective to mitigate these attacks.

Optimizationof context-aware routingprotocols for ContikiOS.
The context-aware routing conserves more energy and support
delay sensitive traffic while implemented on Contiki OS. How-
ever, an extensive research on the optimization of context-aware
routing protocols with different topologies is required to gain the
significant performance gain in real-life implementation.

Opportunistic routing protocol for dense lossy networks. Power
consumption and reliable data delivery are important for IoT ap-
plications, especially for dense lossy networks. The concept of
opportunistic routing has been used to perform energy-efficient

path planning operation of the IoT devices. In dense lossy net-
works, the energy consumption during reception and idle listening
can significantly affect the energy depletion. Therefore, scalable
and energy-efficient opportunistic protocols need to be further
investigated.

CTI-aware routing protocol. The number of IoT devices is in-
creasing day-by-day. These tiny low-power wireless devices suffer
greatly from CTI, which, as a result, increases the bit-error rate.
Therefore, CTI-aware routing protocols are required for data col-
lection in dense urban environments.

Secure network protocols. Research on secure routing protocols
in Contiki OS is in its initial stage. There are a few research works
that attempt to secure routing using existing security mecha-
nisms. Future research directions and open research issues are as
follows.

• Intrusion detection and trust establishment. Existing re-
search focuses on cryptographic solutions only, which can-
not provide full security alone. For example, data dropping
attacks such as blackholes and grayholes or attacks directed
at the routing infrastructure cannot be solved using crypto-
graphic solutions. Moreover, compromised node problems
might be serious problems in the network, which also can-
not be mitigated with cryptographic solutions only. Hence,
intrusion detection and trust establishment techniques can
be used for these kinds of problems.

• Key management. One of the untouched research areas in
secure routing in Contiki OS is key management. Key man-
agement is difficult problem in IoT security. The IKE protocol
is used for manual or automatic key exchange in IPsec.
Although manual key exchange methods are lightweight,
they are less scalable and secure. On the other hand, auto-
matic key exchange is heavier but scalable. Hence, research
is required to discover optimal key exchange mechanisms
which fit the requirements of IoT security and the resource
capability of devices.

• Impact of security mechanisms on routing performance
and energy consumption. It is important to consider the
impact of the security mechanism on routing performance
since it decides the performance of the whole network.
Performance evaluation under different routing protocols,
scenarios, and securitymechanisms helps in finding optimal
solutions. Moreover, energy is an important resource in IoT.
Hence, one of the design goals of the security mechanism
should be energy efficiency.

• Interoperability of different security mechanisms. Many
types of IoT devices can use different types of securitymech-
anisms, which might raise interoperability issues. Hence,
standardizations of security mechanisms and their opera-
tion in IPsec in IoT is an important research direction.
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5. Conclusion

The future IoT network size is enormous and it is rapidly mod-
ernizing everyday life. The IoT OS is the backbone to developing
applications and protocols for heterogeneous devices. An effective
method of finding devices to successfully deliver the data in a
timely manner is crucial to the future IoT. The routing of data
from source to sink is an essential part of IoT. Therefore, this
survey paper presented an overview of Contiki OS-related rout-
ing protocols, issues, improvements, recent research, and future
research directions. The aims of this survey were to lay down the
foundation for researchers and professionals who are interested in
working on IoT routing protocols. It also provides valuable insight
on understanding past proposals, pros and cons of those proposals
and recommendations for future directions. Traditional routing
protocols are not suitable in LLNs. Therefore, a scalable, energy-
and memory-efficient ContikiRPL has been proposed. To support
the interoperability in IoT devices, RPL-Lite has also been proposed.
Furthermore, to find an energy-efficient path, the concept of op-
portunistic routing has been introduced for IoT devices. Moreover,
a discussion on context-aware routing has been presented that is
well-supported by the Contiki OS in the IoT devices.

This survey paper has also discussed a secure network layer
for the Contiki OS called ContikiSec. ContikiSec supports a con-
figurable design, providing three security modes starting from
confidentiality and integrity, and expanding to confidentiality,
authentication, and integrity. In addition, the proposed security
mechanisms and attacks in the Contiki network layer have been
discussed.

We have thoroughly discussed all the proposals in each cate-
gory, as well as issues and future directions. We finally presented
comprehensive challenges, open research issues, and future re-
search directions.
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