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Abstract: Internet of Things (IoT) is rapidly growing and contributing drastically to improve the
quality of life. Immense technological innovations and growth is a key factor in IoT advancements.
Readily available low cost IoT hardware is essential for continuous adaptation of IoT. Advancements
in IoT Operating System (OS) to support these newly developed IoT hardware along with the recent
standards and techniques for all the communication layers are the way forward. The variety of
IoT OS availability demands to support interoperability that requires to follow standard set of
rules for development and protocol functionalities to support heterogeneous deployment scenarios.
IoT requires to be intelligent to self-adapt according to the network conditions. In this paper,
we present brief overview of different IoT OSs, supported hardware, and future research directions.
Therein, we provide overview of the accepted papers in our Special Issue on IoT OS management:
opportunities, challenges, and solution. Finally, we conclude the manuscript.
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1. Introduction

Internet of Things (IoT) is the main driving force behind revolutionizing all aspects of technology.
The seamless integration of all the technologies is the challenging task [1]. Recent advancements
in Millimeter Wave (mmWave) [2], emerging cellular networks [3], Fifth Generation (5G) spectrum
potential for intelligent IoT [4], caching techniques in cellular networks [5], coexitense of wireless
technologies [6], fog computing [7], Vehicular to Everything (V2X) [8], Device to Device (D2D)
Communications [9], IoT resources [10], and IoT Operating Systems (OS) [11,12] etc. research paves
the way towards next generation IoT. Advancements in IoT technologies and availability at lower
prices thriving the devices connectivity and remote accessibility. Hence, the adaptation of standards
are essential to allow communication among these heterogeneous networks in IoT. Connectivity of
industry components using central or distributed manners to increase the productivity and efficiency is
must for Industrial IoT (IIoT). The fourth industrial revolution or industry 4.0 is still evolving. It opens
up humongous challenges for smart and autonomous system that generates huge amount of data to
be processed and hence needs to be intelligent by adopting machine learning algorithms.
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IoT OS continuous development by practitioners and researchers are crucial to provide platform
that supports latest protocols standard for the future intelligent IoT. The device heterogeneity in IoT is
challenging however, IoT OS needs to support different hardware architectures, boards and devices.
There are variety of IoT OSs namely Contiki-OS [13], RIOT [14], and Zephyr [15] are available to
facilitate tremendous growth in this area. IoT devices are resource-constrained in terms of hardware
resources and usually with limited battery capacity. Consequently, well known mature OS cannot
be run on these devices. IoT OS code requires to be optimized with essential Transmission Control
Protocol/Internet Protocol (TCP/IP) capabilities for seamless integration with the global internet.
Therefore, IoT OS needs to be very efficient to manage the resources on all the communication layers.

Majority of IoT OSs provides complete IP networking stack with standard User Datagram Protocol
(UDP) [16], TCP [17] and Hypertext Transfer Protocol (HTTP) [18]. Moreover, it also supports latest
standards like Internet Protocol version 6 (IPv6) over Low-Power Wireless Personal Area Networks
(6LoWPAN) [19], Routing over Low Power and Lossy Networks (ROLL), and Constrained Application
Protocol (CoAP) [20].

The rest of the paper is organized as follows. Section 2 briefly discusses the IoT OSs key features
and characteristics. Section 3 deliberates the supported hardware. Section 4 provides future research
directions. Section 5 summarizes the accepted paper. Finally, Section 6 concludes the paper.

2. IoT OS Key Features and Characteristics

Table 1 provides the key features of different IoT OSs. The list of IoT OSs are exhaustive. Therefore,
we only considered that is mostly used by the research community. TinyOS [21] is preliminary designed
for Wireless Sensor Networks (WSN) and distinctively most popular among the research community
for many years. However, nowadays it is not used much by the researchers due to lack of active
development. TinyOS uses dialect of C programming language called nesC. This complex customized
language is hard to learn. It follows the monolithic architecture and provides cooperative task
scheduler. Tinythread [22] can be used to achieve the multi-threading. It also provides IPv6 stack
based on 6LoWPAN. TinyOS Low-Power Listening (LPL) implements the Radio Duty Cycling (RDC)
to provide the energy efficiency and consequently enhances the network lifetime. TinyOS provides
discrete event simulator called TOSSIM. Hence, users can run and debug the program on the system
instead of the mote.

Table 1. Overview of IoT OSs.

OS Min RAM Min ROM C C++ Multi Architecture SchedulerSupport Support Threading

TinyOS <1 kB <4 kB 7 7 ∼ Monolithic Cooperative

Contiki <2 kB <30 kB ∼ 7 ∼ Monolithic Cooperative,
preemptive

RIOT ∼1.5 kB ∼5 kB 3 3 3 Microkernel
Tickless,

Preemptive,
Priority based

Zephyr ∼2 kB to ∼8 kB ∼50 kB 3 3 3
Nanokernel, Preemptive,
Microkernel Priority based

MbedOS ∼5 kB ∼15 kB 3 3 3 Monolithic Preemptive

brillo ∼32 MB ∼128 MB 3 3 3 Monolithic Completely Fair

Note: ∼ Partial Support; 3 Support; 7 No Support.

Contiki [23] is actively developed by the practitioners and research community. Therefore, it is
widely used by the research community for IoT constrained devices. The low memory requirements
make Contiki well suited for low power constrained devices. It is written in C language. It also
provides the multithreading using the protothread. Contiki uses the cooperative or preemptive based
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scheduling for the processes. Contiki supports several rich network stacks that provides comprehensive
set of features like IPv6, 6LoWPAN, RPL and CoAP. Moreover, it also provides multiple industry
standard Medium Access Control (MAC) such as Carrier Sense Multiple Access (CSMA) and Time
Slotted Channel Hopping (TSCH). ContikiMAC and Contiki X-MAC RDC is used to make the motes
energy efficient. Cooja simulator or emulator is used to quickly write, test and debug the code before
actual deployment. It supports numerous IoT devices like wismote, sky and, z1. Cooja is written in
java and implemented as a single simulation thread. Hence, it cannot take advantage of multi-core
processors and takes long time to finish up the simulation for dense network scenarios. Further,
it needs to further develop to accommodate newly available IoT hardware platforms.

RIOT [24] is developed on top of microkernel named FireKernel by team of freie University
Berlin and HAW Hamburg. Ever Since, active developer and research community is growing
and adding the desired industry specific standards to support ongoing research. The design goals
include energy efficiency, small memory footprint, modularity and uniform API access that provides
independent hardware abstraction. RIOT supports C and C++ programming languages. It also
provides multithreading with tickless, preemptive and priority based scheduler. Multithreading is
designed to reduced inherent drawbacks such as thread management overhead, code stack usage,
and inter-process messaging. Native is the emulator or hardware virtualizer that allows the user to
run the RIOT code as a linux processes. Hence, it is easier to develop IoT software without the need of
actual hardware.

Zephyr is originally developed by Intel subsidiary wind river. It provides microkernel for less
constrained IoT devices and nanokernel for constrained devices.It supports multithreading with
cooperative, priority-based, Earliest Deadline First (EDF), non-preemptive and preemptive scheduling.
The programs can be written in C and C++ programming language. Zephyr provides network stack
support with multiple protocols. It also support Bluetooth Low Energy (BLE) 5.0. The applications can
be develop, build and test using the native posix port.

MbedOS [25] the Real Time Operating System (RTOS) is developed by Advanced RISC Machine
(ARM) for constrained IoT devices. It is specifically designed for 32 bit ARM architecture. It is based
on monolithic kernel and provides preemptive scheduler. It supports C and C++ development.
MbedOS features multithreading, 6LoWPAN, BLE, WiFi, sub-GHz, Near Field Communication
(NFC), Radio-Frequency Identification (RFID) and Long Range Low-Power Wide Area Network
(LoRaLPWAN). Low memory requirements and various hardware support of mbedOS makes it
suitable for IoT research and development.

Formerly brillo and now the android things [26] is developed by Google. It is based on android
however, it is simplified and trimmed down android version to run on low-power IoT devices.
It supports development in both C and C++ programming language. It is built on top of monolithic
kernel and provides completely fair scheduler. Android things memory requirements makes it
unsuitable for low-end constrained IoT devices rather it is designed for high-end IoT devices.

3. IoT OS Supported Motes

IoT OS support of widely used IoT constrained devices are crucial. Table 2 lists the board
architecture build by different vendors that are supported by IoT OSs. Most of these devices have the
small to medium-level resources. The small IoT resource constraint devices usually contains 10 KB of
Random Access Memory (RAM) and 100 KB of Read Only Memory (ROM). Whereas, medium IoT
resource constraint devices have more than of 10 KB of RAM and 100 KB of ROM. Thus, it allows
richer applications with advance protocols and secure communication. Except android things rest of
the IoT OS is well suited for low to medium constrained IoT devices. Small IoT devices are specialized
devices and pose a strict requirement on IoT OS to be very hardware specific with limited capabilities.
Medium IoT devices provides a flexibility to include complete IP suite and different applications to
run on top of network stack. Further, the devices provide additional functionalities and can act as
internet router, host or a server.
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Table 2. IoT OSs Supported Boards

IoT OS AVR MSP430 ARM x86 ARC PIC32

TinyOS 3 3 3 7 7 3

Contiki 3 3 3 7 3 3

RIOT 3 3 3 3 7 3

Zephyr 7 7 3 3 3 7

MbedOS 7 7 3 7 7 7

brillo 7 7 3 3 7 7

Note: 3 Support; 7 No Support.

4. Future Research Directions

Energy efficiency is the crucial aspect for the IoT. Majority of the IoT devices are resource
constrained in nature. Therefore, battery or other constrained energy sources are used to operate it.
IoT deployment scenarios are diverse, challenging and sometimes in very remote areas. Humongous
IoT network size demands IoT OS to be energy efficient to run the IoT devices for many years. IoT
employs RDC to achieve the energy efficiency. Efficient techniques are required to achieve the accurate
motes synchronization along with the RDC.

Real time capabilities of the IoT motes is crucial for timely execution of critical tasks. Internet of
Body (IoB) requires to meet hard deadlines to achieve certain task. Real time operating system (RTOS)
is specifically designed to guarantee completion of these tasks within the certain time frame. Therefore,
IoT OS should have the capability to act as RTOS as well.

Network connectivity is essential for upward and download traffic. Multi-interface may be used
to provide multi-homing or to communicate on different spectrum frequencies. Continuous evolution
and availability of heterogeneous industry standard protocols at different layers is desirable to provide
seamless integration and connectivity of motes to form networks.

Security and safety of critical systems such as health care, smart home, smart city etc. are highly
desirable. In general, IoT OS should support security and privacy of overall IoT network. Open
challenges include data integrity, authentication and access mechanisms. Blockchain based optimized
solution is one of the promising viable technique to address the privacy and security in the IoT. Further,
the deployed network solutions should be continuously reviewed to fix the bugs. Quick development,
deployment, testing and adaptation to recent proposed security standards are essential to provide the
ultimate network security.

Small memory footprint of IoT OS with the availability of complete TCP/IP stack to run on highly
constrained devices is crucial to integrate seamlessly with the global internet. The optimization of the
modules in memory efficient manner without loosing any functionality is a trivial task. To achieve
this, designers and developers have to follow the coding conventions with high degree of ease of
configurability and modularity is desirable.

Heterogeneous devices support is ncessary for the IoT OS. The rapid growth of IoT with diverse
use cases leads the way to develop massive heterogeneous devices. Hence, IoT OS needs to constantly
incorporate newly developed hardware platform. Explosion of numerous IoT OSs and heterogeneous
devices pose another challenge called interoperability. Thus, there should be standard set of rules
for development of multiple layers of protocol by the IoT OSs. Consequently, deployment scenarios
with multiple use cases that contains heterogeneous devices, running different IoT OSs can seamlessly
integrate without an issue.

Intelligent IoT (I-IoT) are the future key contributor for massive adaptation of IoT in daily life.
In recent years, researchers start exploring and applying the artificial intelligence (AI) to IoT use cases.
Machine learning (ML) is well explored and investigated in the area of neural networks and image
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processing. However, its potential and application is not yet fully explored for IoT. ML techniques
needs to be optimized to run on IoT constrained devices.

IoT and big data is closely linked together as IoT devices generate humongous amount of
unstructured data. Therefore storage, processing and analyzing big data is essential to generate
the meaningful reports to make decisions. This can lead to data-driven research instead of hypothesis
driven. New efficient and accurate techniques of data analytics is crucial for development of future
innovative solutions.

5. A Brief Review of Articles of This Special Issue

Proliferation of IoT devices leads to the dense wireless network deployments. Further, availability
of sub-1 GHz bands for the communication requires standard to fully explore the potential. Thus,
IEEE 802.11ah [27] standard is released. In 802.11ah, a single Service Access Point (SAP) can support
and serve maximum of 8191 stations with a minimum of 100 kbps data rate within the range of 1
km. In [28], authors explored Cognitive Radio (CR) based 802.11ah networks and proposed new
distributed MAC protocol named as carrier sense Restricted Access with Collision and Interference
Resolution (RACIR). Its the hybrid MAC protocol based on CSMA/CD and CSMA/CR protocols. It
resolves the scalability and hidden primary terminal problem. Each station enable contention free
grouping access by estimating the active stations in the group by using split algorithm.Therein, it access
the channel in random access contention based manner to avoid interference with the Primary User
(PU) receiver. RACIR is compared with CR-CSMA/CA and the results showed that it considerably
improves performance in terms of throughput, delay and energy consumption.

IIoT is revolutionizing the industry. It is used to collect, analyze and apply the information from
numerous sensors to further improve the overall efficiency of the system. The network design and
topology plays a crucial role on the performance of the system. The proper handling of massive data
generated by the sensors and security are the key to run the system efficiently. Therefore, Liu et al. [29]
addressed the topology design by considering uncertain factors in production process and sensor
demands. Moreover, they proposed big data analysis model along with the security protection system.
They used Analytic Hierarchy Process (AHP) to analyze the intelligent evaluation index model.
They applied and evaluated the proposed solution to the diesel engine enterprise. According to the
results, the proposed network topology deployment interconnect all the production units, efficiently
process, handle and share the information among different units, and increased the system security.
Consequently, it makes the enterprise more robust, adaptive and flexible.

Smart homes with efficient Home Energy Management System (HEMS) provides reliability and
consequently energy conservation. These systems are specifically designed to cater challenges like
user comfort, and cost reduction etc. In [30] Ain et al. presented Fuzzy Inference System (FIS) by
considering humidity level as an additional parameter. They also used indoor room temperature
variation as a feedback to FIS to manage the energy consumption and user comfort. They also automate
the FIS using automatic rule based generation method using the combinatorial method. The results
showed that the proposed scheme improves the overall system and considerably reduced the energy
consumption without compromising the user comfort.

Underwater Wireless Sensor Networks (UWSNs) is useful for aquatic monitoring, pollution
monitoring and mineral extraction etc. Highly challenging UWSNs communication environment
makes it very difficult to route the packets from sensor nodes to the sink. These devices are mostly
battery operated and highly resource constrained. Hence, inefficient routing method consumes more
energy and inevitably results in node failures. These sudden node failures results in creating void
node problem. Sher et al. in [31] proposed four schemes namely Adaptive transmission range in
WDFAD-Depth-Based Routing (DBR) (A-DBR), Cluster-based WDFAD-DBR (C-DBR), Backward
transmission-based WDFAD-DBR (B-DBR) and Collision Avoidance-based WDFAD-DBR (CA-DBR) to
increase energy efficiency, decrease void node problem, decrease end-to-end delay, fall back recovery
mechanism and reduce collisions. A-DBR dynamically adjust the transmission range to cater void



Sensors 2019, 19, 1793 6 of 10

node problem and consequently save energy with higher successful packet delivery. C-DBR decreases
end-to-end delay but on the cost of higher energy consumption. B-DBR increases packet delivery ratio
with increase in overall accumulative propagation distance. CA-DBR consumes less energy along with
low end-to-end delay. Hence, different proposed schemes improves the quality in certain aspects and
provides performance trade-offs according to user requirement.

Information-Centric Networking (ICN) uses name instead of IP address to retrieve the contents.
ICN faces many challenges in emerging and dynamic environment such as Vehicular Ad Hoc Networks
(VANETS). Din et al. [32] discussed the comprehensive opportunities and challenges for ICN with
respect to Software Defined Network (SDN), cloud computing and edge computing. They discussed
aforementioned models challenges and future research directions in terms of mobility, security, routing,
naming, caching and 5G communications.

Implementation of edge computing is a trivial task for constrained IoT devices. IoT OS manages
all the resources of IoT motes. In [33] Rodriguez-Zurrunero et al. investigated thoroughly the
cross-influence of computational load of different processing tasks for IoT devices. Communication
and processing are two inter-related tasks. Authors used YetiOS [34] that is built on top of FreeRTOS
and YetiMotes for testbed. Certain communications scheme have strict timing requirements to
complete the task. Otherwise, overall system performance degrades significantly. It is very crucial
for healthcare or real time surveillance to process the information on time and generate the alarms or
alerts accordingly. Hence, availability of affordable additional computational resources is necessary for
handling high load and faster communication.Contrarily, design of intelligent communication protocol
is required to handle the high communication load. Hence, new process management schemes can
manage the communication tasks and processing tasks efficiently and fulfill the requirements of both.
Additional experiments with different IoT OSs by considering transport protocols, routing protocols,
MAC protocols, and complex deployment scenarios to study the other aspects is crucial for better
understanding of cross-effects between processing and communication tasks.

Blockchain is proposed to act as a shared and decentralized ledger to keep the transaction
records.There are three main types of blockchain namely public, private and consortium. Public
blockchains are decentralized management systems and allows anonymous participants. Private
blockchain is for single organization where only trusted and identified users are permitted to
participate. Consortium blockchains are designed for multiple organizations with trusted and
identified participants. Public blockchain technologies are very slow as compared to private or
consortium blockchains technologies. Obour Agyekum et al. [35] proposed secure and efficient
re-encryption blockchain scheme for resource constrained IoT network. Experiment results revealed
that the proposed scheme increases the processing delay however at the cost of secure interactions
between the entities. Further studies are required to reduce processing delay and make it more efficient.

CoAP is a specialized protocol specifically designed for low cost constrained IoT networks. Fully
fledged CoAP requires extensive computing, processing and storage capabilities. Therefore, to cope
with this issue, Islam et al. [36] proposed CoAP handler for ICN POINT architecture. The objective is
to provide CoAP group communication without IP multicast support and changing existing Domain
Name System (DNS). Moreover, they added the functionality of CoAP observe and enable delaying
response when CoAP server is in sleep mode. Experiments are conducted on POINT testbed and in
mininet. Results shows that proposed scheme successfully able to shift the overhead and complexity
from the CoAP endpoints to the ICN network without loosing any functionality. CoAP observe
aggregation scheme also reduces the communication overhead. Further evaluation on larger testbed is
required to fully see the potential of proposed scheme.

Khalid et al. [37] proposed spatial and temporal spectral-hole sensing framework for Full
Duplex enabled Secondary User (FD-SU) Transmitters (TXs) deployed in IoT CRN(IoT-CRN) spectrum
heterogeneous environment. They incorporated the proposed sensing model and present the analytical
formulation. They evaluated the Utilization of Spectrum (UoS) scheme for FD-SU TXs present at
different spatial positions.It is demonstrated that self-interference, primary user (PU) activity level, and
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the sensing outcomes in spatial and temporal domains have a significant influence on the utilization
performance of spectrum. The FD-SUTX in R2 (with spatial opportunity) have the excessive false
alarms. However, the average number of successful secondary communicating sensing slots for FD-SU
TX in region one (R1) (with only temporal opportunity) are less than that of FD-SU TX in region two
(R2). Owing to the fact that FD-SU TX in R2 can avail the spatial spectral opportunities even when PU
is in ON state, which is not the case for FD-SU TX in R1. It is interesting to consider and evaluate the
temporal and spatial variations of idle channels in more complicated IoT-CRN scenarios.

IoT based Intelligent Transportation Systems (ITS) are crucial for road safety and are essentially
part of the smart cities. Cheaper Smart phone sensors based ITS solutions are rather preferred over
expensive hardware based solutions. Bhatti et al. [38] presented ITS solution to reduce the false
positive rates. The proposed scheme contains accident detection and notification system. They used
accelerometer, Global Positioning System (GPS), pressure and microphone sensors to correctly detect
the accidents and informs the medical rescue team for immediate medical assistance. The results
shows that proposed system performs better than the past related schemes. However, it is essential to
test the proposed scheme in real time scenarios to fully realize the effectiveness of the system before
actual deployment.

6. Conclusions

Ten papers in this SI presents state-of-the-art research trend in the area of IoT OS management,
opportunities, challenges, and solutions. The papers presented interesting discussion and novel
ideas for the readers. The guest editors would like to show appreciation to authors and thank all the
anonymous reviewers on providing constructive feedback to improve the overall quality of all the
accepted papers. We would also like to thank editor-in-chief Prof. Dr. Vittorio M.N. Passaro, Prof. Dr.
Leonhard M. Reindl, Prof. Dr. Assefa M. Melesse, Prof. Dr. Alexander Star and managing editor Fanny
Fang for the invaluable help and productive advice in finalizing this SI.
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Abbreviations

The following abbreviations are used in this manuscript:

5G Fifth generation
6LoWPAN IPv6 over Low-PowerWireless Personal Area Networks
AHP Analytic Hierarchy Process
AI Artificial Intelligence
BLE Bluetooth Low Energy
CoAP Constrained Application Protocol
CR Cognitive Radio
CSMA Carrier Sense Multiple Access
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D2D Device to Device
EDF Earliest Deadline First
FD-SU Full Duplex enabled Secondary User
FIS Fuzzy Inference System
HEMS Home Energy Management System
HTTP Hypertext Transfer Protocol
ICN Information-Centric Networking
IIoT Industrial IoT
ITS Intelligent Transportation System
IoT Internet of Things
I-IoT Intelligent Internet of Things
IoT-CRN IoT- Cognitive Radio Network
LoRaLPWAN Long Range Low-Power Wide Area Network
MAC Medium Access Control
ML Machine Learning
mmWave MillimeterWave
NFC Near Field Communication
OS Operating Systems
PU Primary User
RACIR Restricted Access with Collision and Interference Resolution
RDC Radio Duty Cycling
RFID Radio-Frequency Identification
ROLL Routing over Low Power and Lossy Networks
RTOS Real Time Operating System
SAP Service Access Point
SDN Software Defined Network
TCP Transmission Control Protocol
TSCH Time Slotted Channel Hopping
UDP User Datagram Protocol
UoS Utilization of Spectrum
UWSNs Underwater Wireless Sensor Networks
V2X Vehicular to Everything
VANETS Vehicular Ad Hoc Networks
WSN Wireless Sensor Networks
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