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A B S T R A C T

Sustainable cities are widely adopting the standards of the Internet of Things (IoT) in almost every domain, e.g.,
smart grids (SG) to provide services to a sustainable community. It enables two-way communication to manage
the energy resources, where routing protocol has a significant role in communication. The diversification of IoT
networks arises many challenges for the routing protocol for low power and lossy networks (RPL). The dynamic
and lossy environment is one of the key challenges in various IoT networks, specifically SG. RPL does not able to
adjust its link metric efficiently against the dynamic and lossy environment, which have a great impact on the
performance metrics. To address this issue, we have introduced cognition in RPL by integrating learning au-
tomata with the objective function (LA-OF). Learning automata (LA) is applied to expected transmission count
(ETX) to tune it according to the environment. LA learns through interacting with the environment and yields the
best ETX values, afterwards the environment is monitored to trace down the instability in the environment. The
proposed LA-OF is compared with standardized techniques MRHOF and OF0. The simulation results show a
significant improvement with overall 7.04% in PRR, 17.52% in energy consumption, and 18.72% in overhead.

1. Introduction

With the growing population, the utilization of resources has be-
come a critical factor to be considered for the world. To overcome this
factor, the concept of sustainable cities has been introduced, which has
three main pillars economic, social, and environment development (ten
Have & Gordijn, 2020). The urban cities are transforming into smart
sustainable cities, where the concept of machine-to-machine (M2M)
communication and tactile networks are widely adapted (Bibri &
Krogstie, 2017). The integration of M2M communication in every as-
pect of life has been seen from the past few decades that affect human
life unimaginably because it helps to improve efficiency and manage-
ability of systems without any human interaction.

The M2M networks may consist of millions of devices and mostly
integrate compact devices due to the economic constraints of a sus-
tainable community, where each devices have to connect with the
network. To address these global requirements, the researchers come up
with the concept of the IoT (Al-Turjman, 2020; Gubbi, Buyya, Marusic,
& Palaniswami, 2013; Sethi & Sarangi, 2017). IoT is like a big umbrella
that can enable each entity in the world to connect and communicate
over the Internet without human interaction. IoT networks are based on
Internet Protocol version 6 (IPv6), so they can able to assign a unique

identification (ID) to each device, which permits devices to transmit
data over the Internet. There are a variety of sustainable cities appli-
cations that are adapting the IoT standards, e.g., smart grids (SG), smart
cities, industry, agriculture, hospital, transportation, etc. (Al-Turjman &
Malekloo, 2019; Chen, Xu, Liu, Hu, & Wang, 2014; Lee & Lee, 2015;
Sailaja & Rohitha, 2018; Schulz et al., 2017). According to stats of Intel
around 200 billion devices will be connected to IoT by 2020 (Intel,
2018).

Smart sustainable cities strongly rely on wireless sensor networks
(WSNs) (Abujubbeh, Al-Turjman, & Fahrioglu, 2019; Bibri, 2018; Yick,
Mukherjee, & Ghosal, 2008) for the environmental and economic de-
velopment of the cities. WSNs plays a vital role in sustainability, as it
makes the physical system manageable without any human interaction,
flexible, reliable, and redundant. The IoT based sensors are compact
devices that are embedded with a small processing unit, battery-pow-
ered, and few kilobytes of memory to make them compact, portable,
and affordable. These hardware constraints raise many challenges for
the low power and lossy networks (LLNs). To deal with them, a mod-
ified network stack has been presented in RFC 8352 for IoT, as shown in
Fig. 1. Furthermore, lightweight operating systems (Javed, Afzal,
Sharif, & Kim, 2018) like Contiki, RIOT, TinyOS, etc. have been pro-
posed for IoT devices to manage the limited resources efficiently and
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effectively. Each layer of IoT stack has its constraint for the LLNs.
IoT based WSNs generate the bulk of data collecting from different

resources of sustainable cities, each associated node with the IoT net-
work has to dissipate their data to a sink or root node. The Internet
layer has the responsibility to define the path to nodes for the trans-
mission of data, where routing protocols define the rules and regula-
tions for the creation and selection of a path from nodes towards the
root node. Taking the requirements of LLNs into the consideration,
Internet Engineering Task Force (IETF) presented the IPv6 based
routing protocol for low power and lossy network (RPL) (Hui &
Vasseur, 2012). Routing protocols make decisions on some parameters
or functions. RPL creates logical tree topology based on ranks, where
rules for routing and calculation of rank are defined in objective
function (OF) (see the section for more details). OF negotiate among
link and/or node metrics for the calculation of rank, and the selection of
preferred parent nodes (it is used for routing). The standardized OF
performs these tasks on the bases of link metrics.

1.1. Motivation

IoT is rapidly converging in every field of a smart sustainable
community. Each of the IoT based sustainable city application has its
challenges and constraints, while many of them have to encounter with
environmental factors. Specifically, smart grids where the dynamic and
lossy environment dramatically affects the IoT based WSNs. According
to the phenomena of physics, the environment has a direct impact on
wireless communication. Moreover, next-generation technologies are
more intelligent and self-sustaining as they adjust their performance
according to the environment. The integration of the new generation in
real-world applications is essential to make them self-sustainable. So,
by integrating learning algorithm in RPL make them self-sustainable
according to the environment.

1.2. Contribution

In the IoT based WSNs, RPL protocol is used for routing, which
extensively takes the decision (defined in OF) based on the link metric.
The standardized OF is unable to perform efficiently and effectively due
to effect of environmental constraint on the link metric (ETX), which in
result degrade the performance of the network in term of packet de-
livery ratio, energy consumption, and control overhead. The self-sus-
tainability of link metrics, according to the environment, is one of the
open issues of IoT. To deal with this issue, we propose a new learning
automata-based OF (LA-OF). In LA-OF, LA is integrated with each node,
to individually and recursively examines the environment. It learns and
tunes the link metric (ETX) through interacting with the environment

because the routing decision of RPL is based on the link metric. Each
node in a network learns the environment and yield the best link me-
tric, and update the preferred parent table accordingly. Then the
routing strategies are made on the bases of tuned link metrics.
Moreover, in offline learning mode, nodes continuously learn the en-
vironment without updating the link metric until the instability in the
environment has been traced.

The rest of the article is comprised of the following sections. Section
2 provides a brief introduction about RPL and then discusses the related
work. Section 3 presents the problem statement, motivation for this
research, and proposes the solution. Section 4 discusses the perfor-
mance evaluation and analysis of the proposed OF with standardized
OFs. Finally, Section 5 concludes the paper. Whereas, Table 1 presents
the list of abbreviations used in this article.

2. Related work

2.1. Background

This section briefly discusses the RPL: types of control messages
used in RPL, objective functions, and RPL topology.

2.1.1. RPL control messages
There are four types of control messages, as shown in Fig. 2 are

exchanged between nodes to build and maintain the topology:

1. DODAG information solicitation (DIS) exchanges when a node
wants to join the network by probing its neighbor for the nearest
DODAG.

2. DODAG information object (DIO) messages are exchanged to build
and maintain the topology, and it is generated by parent nodes

Fig. 1. Comparison of Internet of Things vs traditional network stack.

Table 1
List of abbreviations.

Symbol Description

ACK Acknowledgement
DAO Destination advertisement object
DAO-ACK DAO acknowledgement
DIO DODAG information object
DIS DODAG information solicitation
DODAG Destination oriented directed acyclic graph
EC Energy consumption
ETX Expected transmission count
HC Hop count
IETF Internet Engineering Task Force
ID Identification
IoT Internet of Things
IPv6 Internet Protocol Version 6
LA Learning automata
LA-OF Learning automata based objective function
LLNs Low power and lossy networks
LQE Link quality estimation
M2M Machine-to-machine
MAB Multi-arm bandit
MRHOF Minimum rank hysteresis objective function
NAN Neighborhood area network
OF Objective function
OF0 Objective function zero
RL Reinforcement learning
PDR Packet delivery ratio
PL Packet loss
PRR Packet reception ratio
QU Queue utilization
QL Queue length
RE Remaining energy
RPL Routing protocol for low power and lossy networks
RSSI Received signal strength indicator
SG Smart grid
WSNs Wireless sensor networks
UDGM Unit disk graph medium
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containing its rank, DODAG version number, RPL instance ID, etc.,
while Trickle Timer (Levis, Clausen, Hui, Gnawali, & Ko, 2011) is
used to transmit DIO messages periodically.

3. Destination advertisement object (DAO) is used to transmit desti-
nation information upward. In storing mode DAO send to preferred
parent, while in non-storing mode, DAO sends towards the root.

4. DAO acknowledgment (DAO-ACK) is the response of the DAO
message sent by DAO recipients.

2.1.2. Objective function (OF)
An objective function is an essential attribute in RPL. Routing de-

cisions of RPL are based on OF, and it defines the rules for rank cal-
culation and parent selection in RPL topology. The routing in RPL is
done by using rank and parent selection, and each node assigns a rank
based on the rules defined in OF and node with low-rank act as a parent
and higher ranked nodes as a child. Child nodes maintain the parent
table, and selection of the preferred parent is made according to the
rules defined in OF. There are two standardized OFs objective function
zero (OF0) and minimum rank with hysteresis objective function
(MRHOF).

OF0 (Thubert, 2012) calculates the rank on Hop Counts by adding
constant value in rank at each hop according to Eq. (1). OF0 just con-
sider the relative distance from the root node for rank calculation rather
than considering link condition, latency, or any other parameter, and
the node will select the parent having lowest hop distance.

= +Rank parent_r ank rank_i ncrease, (1)

where rank_i ncrease is the constant value.
MRHOF (Gnawali & Levis, 2012) considers the link metric (e.g.,

expected transmission count (ETX) or latency) for rank computation. It
calculates the rank by using Eq. (2), which adds ETX value in the parent
rank. It is also a default OF used in RPL.

= +Rank parent_r ank path_c ost, (2)

where path_c ost is the measurement of link metric.

2.1.3. RPL topology
RPL (Hui & Vasseur, 2012) is the distance vector routing algorithm

that creates logical typologies based on destination-oriented directed
acyclic graphs (DODAGs). DODAG has a tree-like structure that has one
or more root nodes that act as a sink or gateway node, and the re-
maining topology comprises the pairs of parent and the child nodes.
The nodes with lower rank act as a parent, while the higher-ranked
nodes are associated with children. The child nodes have information
about all possible parents while the parent has no information about
associated child's. The root node starts the DODAG construction by
broadcasting control message (DIO) containing rank, instance ID,
DODAG version, etc. Root node had always had rank 0 so that traffic
should be routed toward that node. Every node which receives DIO
message update the rank field using MHROF and broadcast the updated
DIO. This process continues until every single node receives the DIO.
Each node maintains its parent table, which contains the entry of

directly connected nodes with lower ranks than its own rank. The node
will select the preferred parent, and selection is based on rules defined
in objective function MRHOF. RPL can support multiple DODAG's and
instances in a single network. Each instance has a unique ID and allows
to implement multiple OF's within a network. Nodes with the same
instance ID share common OF, and the nodes can belong to multiple
instances. RPL has two types of mechanisms for topology management
which are; local repair and the global repair.

1. Local repair is called by child node when there is inconsistency in
the network such as link failure, loop detection, etc.

2. Global repair is the rebuilding of the whole topology triggered by
the root node by increasing the version of DODAG when the local
repair will not able to solve the issue.

There are two modes of operation in RPL for packet forwarding; storing
mode and non-storing mode:

1. Storing mode in which the parent stores the DAO and regenerate the
DAO by combining previous DAO and route information.

2. Non-storing mode parent will not store the DAO and only add their
route information.

RPL can support three types of traffic: multipoint-2-point (MP2P)
mostly adapted type of traffic used for transmitting traffic upward from
child nodes toward the root, point-2-multiPoint (P2MP) for transmit-
ting downward traffic toward child nodes from the root node and point-
2-point (P2P) which is used for the communication between two nodes.

2.2. Existing enhancements in RPL

The rules for routing in RPL are defined in OF; however, it is not
restricted to only use the standardized OF. Therefore, RPL provided the
room for researchers to enhance or develop the OF according to the
requirement. Different routing approaches (Kamgueu, Nataf, & Ndie,
2018) have been proposed in order to improve the performance of the
network by optimizing different performance parameters, e.g., packet
delivery ratio, throughput, power consumption, overhead, etc.

In the wireless network, the exact measure of link quality is an
important factor for communication. To improve measuring procedure
Ancillotti et al. proposed a reinforcement learning (RL) based link
quality estimation (LQE) strategy for RPL (RL-Probe) (Ancillotti,
Vallati, Bruno, & Mingozzi, 2017). RL-Probe used both asynchronous
and synchronous LQE. In asynchronous LQE, it has both proactive and
reactive phases; in a proactive phase, it measures the trend of the re-
ceived signal strength indicator (RSSI) alongside ETX, while in the re-
active phase, it performs an immediate local repair of RPL. In syn-
chronous LQE, it classified nodes into clusters and apply multi-arm
bandit (MAB) (Aziz, 2019) for probing procedure to prioritize specific
groups to improve probing. In RL-probe author optimized the probing
procedure; however, the tuning of the link metric has not been con-
sidered. Moreover, clustering increased the control overhead.

In context-aware and load balancing RPL (CLRPL) for IoT networks
under heavy and highly dynamic load (Taghizadeh, Bobarshad, &
Elbiaze, 2018), authors present new OF named as context-aware ob-
jective function (CAOF). It computes the rank based on the remaining
energy, ETX, and rank of the parent; moreover, they also address the
thundering herd problem. They also proposed context-aware routing
metric (CARF) for load balancing of routes as well as power balancing
in parent's chain. CARF focused on the utilization of the queue and the
remaining energy of the parent chain rather than a single parent. They
also overcome the problem of equality illusion by selecting the best
parent based on CARF. The proposed scheme improves energy con-
sumption and decreases the packet loss ratio but increases the DODAG
information object (DIO) overhead.

In congestion-aware RPL (CoAR) (Bhandari, Hosen, & Cho, 2018),

Fig. 2. Control messages of RPL.
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authors address the issue of congestion at parent nodes because of the
non-symmetric distribution of child nodes. They introduced a new OF
named congestion aware objective function (CoA-OF) based on multi-
criteria decision making (MCDM) to overcome the congestion. CoA-OF
is based on the technique for order preference by similarity to ideal
solution (TOPSIS) (Papathanasiou & Ploskas, 2018), which considers
three metrics (ETX, queue utilization (QU) and RE) for parent selection.
CoAF also presents an adaptive threshold technique for congestion
detection by measuring the buffer occupancy based on the past and
present traffic. CoAR improves packet delivery ratio, throughput, and
energy consumption while on the other hand, it increases control
overhead and frequent parent changes in high traffic scenarios.

Author's in (Nassar, Gouvy, & Mitton, 2017) proposed quality of
service (QoS) based multi-objective (OFQS) OF to meet the require-
ments of SG. OFQS automatically adapts the multiple instances ac-
cording to the requirement of SG. The routing decisions of OFQS are
based on three metrics: ETX, delay, and power state. They classify the
nodes into three power states based on their remaining energy. On the
bases of those three metrics, OFQS allocates the weight to each route.
Additionally, they categorized the traffic into three types: critical, non-
critical, and periodic. Critical traffic chooses the route, which has a
minimal delay (between 1s to 30s) and reliability of greater than
99.5%. While non-critical traffic chooses route having the maximum
delay and reliability of 98%. Periodic traffic follows the path which has
a moderate delay (about 5min to 4hours) and having a reliability of
98%. The proposed solution improves end-to-end delay, PDR, and
network lifetime. However, their tuning parameters are fixed and
cannot deal with the dynamic network. It can be solved by employing
machine learning algorithms.

In (Lamaazi, El Ahmadi, Benamar, & Jara, 2019), the authors are
intended to provide a solution for applications that required data re-
liability, efficient energy consumption, and guaranteed delivery of real
time data. The proposed flexible OF, where forwarder is selected
through the combined result of three metrics: ETX, EC and forwarding
delay. It calculates the composite additive metric, where each metric
has defined weight. The ratio of weight depends on the application or
type of traffic. The proposed technique is applied to the parent table.
The composite additive metric is calculated against each entry of the
parent table and reconstructs the parent table based on the calculated
metric. The proposed technique improves the PDR and EC, while it
increases the overhead.

Chaotic genetic algorithm (CCG) (Cao & Wu, 2018) is an improved
version of RPL. The main objective of this algorithm is to enhance
parent selection mechanism using chaos and genetic algorithm. With
the help of the ergodicity of a chaotic algorithm, CGA increases the
search by using global search quality of genetic algorithm to find the
optimal solution. They create a composite metric (CM) by utilizing
queue length (QL), end-to-end delay, residual energy ratio, hop count
and ETX, and assign a weight to each metric. Weighting factors in CM
are optimized by a chaotic genetic algorithm to select the best parent.
This algorithm improves the average success ratio, end-to-end delay,
and residual energy. However, the network overhead has not been
considered in this research.

In Lamaazi and Benamar (2018), new objective function named as
OF-EC is proposed. OF-EC employs a fuzzy logic technique to make
routing decisions. OF-EC use ETX and energy consumption (EC) as a
combined metric. The proposed OF can reduce energy consumption as
well as packet loss by selecting the best parent. However, it increases
the frequently parents change ratio.

In Bahramlou and Javidan (2018), the author integrates the ag-
gregation technique to efficiently utilize limited resources. Firstly, the
authors designed the appropriate aggregation technique, which merges
the correlated data to reduce resource consumption by limiting the data
packets. They also introduced the trigger function to observe the en-
vironment and select the less congested parent. Furthermore, the
number of children is also used for rank calculation. This approach

improves the DIO overhead, packet retransmission ratio, PDR, and
energy consumption, but it increases the congestion at the parent in
dense traffic scenarios.

E-RPL has been presented in Zier, Abouaissa, and Lorenz (2018) to
meet the QoS routing criteria and decrease the control overhead in the
network. To control the DIO overhead for ETX, they limit the nodes to
wait for DIO. Sink node generates the DIO packet at first instance rather
than waiting for DIS or DAO packet. On the other hand, nodes wait for
DIO from their neighbors rather than sending DIS, if they did not re-
ceive it then nodes generate DIS for the DIO packet. They also proposed
a new OF named as multi-constraint OF. E-RPL uses energy and delays
with random weighted to calculate the node rank. Their contribution
improves energy consumption as well as an end-to-end delay. However,
it increases the network convergence time.

In Fabian, Rachedi, Gueguen, and Lohier (2018), authors present
the new OF using the fuzzy rules to dynamically adapts the environ-
ment. They apply fuzzy logic by using ETX and energy consumption.
For rank calculation, they define three cases. First, when the battery
level is above the threshold value, ETX is used for rank computation.
Second, when the battery level is less than the threshold, then the
combined metric of ETX and the remaining energy is used for rank
computation. Third, when the battery is empty, then this node is
eliminated. The proposed objective function shows improvement in
PDR and throughput, but it increases energy consumption.

In Ghaleb et al. (2018), a load balancing mechanism is used to select
the parent and improves network reliability. They used the number of
children along with the ETX metric for parent selection. To monitor the
load, each node generates a child list (CHlist) by analyzing the data
packet. The expiration of Trickle timer will cause a frequent change in
load balancing information. To avoid this, they introduced fast propa-
gation timer along with Trickle timer to update the CHlist. The rank is
calculated by standardized metric (e.g., ETX or HC depends on appli-
cation) and if the node has more than one parent with the same rank.
The CHlist will be checked, and a node having fewer children is selected
as a preferred parent. Balancing Timer is introduced to avoid the fre-
quent changing of parents. Their contribution improves the PDR and
energy consumption, but it increases network convergence time, and
fast propagation may cause looping in the network.

Table 2 provides a summary of related work.
To provide the QoS for applications that are delay-sensitive and

require reliability, the author presents new opportunistic fuzzy logic-
based objective function (OOP-OF) (Kechiche et al., 2019). OOP-OF
considered three metrics for the parent node: ETX, HC, and children
nodes. The fuzzy set takes three metrics (HC, EX, and CN) as an input,
which are evaluated based on defined rules and aggregated. The de-
fuzzification is performed to get the output from the aggregated set, and
then the parent table is reconstructed on those outputs. It improves the
PDR and delay, while it will increase energy consumption.

3. The proposed work

In the proposed work, an application of smart sustainable cities is
considered, specifically, IoT based WSNs for Neighbor Area Network
(NAN) in Smart Grid (SG), as shown in Fig. 3. SG (Yan, Qian, Sharif, &
Tipper, 2012) system is a new generation of the electrical grid to fa-
cilitate the sustainable community. It enables the monitoring and
manageability of intelligent electrical systems remotely. SG archi-
tecture comprises of home area networks (HANs), neighborhood area
networks (NANs), wide area networks (WANs) and SG management
system. HANs is the end network consists of intelligent devices, sensors,
actuators, etc. which collect the data from different appliances (e.g.,
entertainment, lights, air-container, water management, security
system, door locks, and heat) or devices. The collected data have to be
forward to the SG management system for processing. NANs are the
second layer of SG, as shown in Fig. 3, which comprise of smart devices
belonging to multiple HANs. NANs support communication between
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different smart meters (e.g., these are the devices that collect the data
from HANs and aggregate it), which forwards and disseminates the data
to the SG management system. The data are forwarded periodically to
the gateway to monitor and manage the devices. To effectively and
efficiently manage those devices, packet reception ratio, latency, and
energy consumption in the NANs are important performance para-
meters to be considered.

In RPL, the link metric (ETX) has a direct impact on these perfor-
mance parameters, because IoT adopts a connection-less transport
protocol. To ensure the delivery of packets, RPL gets feedback from the
MAC layer by counting the expected number of transmission (ETX)
required for the successful delivery of the packet. The exact estimation
of ETX increases the ratio of successful transmission, which in result
improves the PRR and avoids the redundant transmission (unwanted re-
transmission and control packets), which may consume extra energy. In
NANs, the environment is not very much stationary, as many factors
affect radio transmission (e.g., weather, electromagnetic devices, and
temporary events which may be an obstacle, etc.). These factors greatly
affect the link metric, where RPL couldn’t be able to measure the exact
estimation of ETX, so tuning the ETX according to the environment will
help the nodes to have the exact ETX. To tune the desire ETX values
according to the environment, learning automata is integrated with OF
because of its adaptive nature and lightweight algorithm in terms of
resource utilization.

3.1. Learning automata

Learning automata (LA) (Narendra & Thathachar, 2012) is known
for its adaptive nature, as it adapts the changes according to the en-
vironment. LA is generally described as a learning model that interacts
with the random environment repeatedly and selects the optimal action
for the system based on reward and penalty mechanisms. The learning
process consists of two stages; firstly, the chosen action is tested in a
random environment that generates the reinforcement signal in-
dicating, whether the selected action is favorable or not. After that, the
agent (LA) on the base of the reinforcement signal updates its internal
parameters as a probability vector. This learning cycle continues until
the termination condition occurs, where the optimal value is selected,
which yield the highest probability. Table 3 lists the notations used in
the equations.

Formally (Narendra & Thathachar, 1974; Unsal, 1998), the random
environment is represented as =E α β c, , where = …α α α α, , , n1 2 is the
set of output for automaton and input for the environment,

= …c c c c, , , n1 2 is the probability vector also called penalty prob-
abilities, and = …β β β β, , , n1 2 is the set of input for automaton and
output for the environment. The random environment is classified into
three models; P-model, where the reinforcement signal is either 0 or 1,
in Q-model reinforcement signal, is from interval {0, 1} having finite
values, and the third is an S-model where the reinforcement signal is
from the interval {0, 1} having infinite values.

LA updates the probabilities of action based on the reinforcement
signal received form the environment. Some different norms or prac-
tices are used for updating the probabilities. Evaluate the behavior on
receiving an average penalty of LA:
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+ =p n T p n α n β n( 1) [ ( ), ( ), ( )], (4)

where T is the mapping function, α is the action, β is the reinforcement
signal from the environment, and p n( ) is the probability vector.
Moreover, the reinforcement scheme is said to be linear if +p n( 1) is a
linear function of p n( ) otherwise nonlinear.

The reinforcement learning is categorized into three learning
schemes; linear, non-linear, and hybrid. The linear reinforcement
learning scheme is applied in this research, where at each iteration, the
probabilities are updated at a constant rate. It has three learning
functions: linear reward-penalty (LR-P), where getting a reward or
penalty on a given action, will result in an equal penalty or reward on
other actions. linear reward-inaction (LR-I) was getting a reward or
penalty on a given action, which will result in no change in the prob-
abilities of other actions. Linear Reward-Penalty (LRϵP) with <ϵ 1
where getting a reward or penalty on a given action will result in
penalty or reward on other actions but a small amount.

3.2. Proposed LA-OF

Every node in a network measures ETX periodically, so the tuning of
the link metric should be done independently. In this case, leaning
automata is the most suitable type of learning approach because of
being a lightweight algorithm in terms of resource utilization and its

adaptive nature. Furthermore, it does not necessarily require a definite
starting state or point and runs on any configuration. It learns through
interacting with the environment at run-time and tunes the parameter
according to the environment under less processing overhead.

LA is integrated into the nodes to fine-tune the ETX to provide the
exact estimation of transmission. The rationale behind this scheme is
the independent tuning of ETX takes to redundant estimation, espe-
cially in an open environment. The LA-based system has two types of
parameters; controllable parameters and observable parameters.

1. Controllable parameters are the internal parameters that are input
to the network and can be changeable according to requirement.

2. Observable parameters are the external parameters that are mea-
sured or the output of the system.

In LA-OF, learning automata takes ETX as a controllable parameter and
Packet Loss (PL) as an observable parameter. Learning automata tune
the controllable parameter by getting a reinforcement signal from the
environment on the bases of observable parameters. At the start of the
learning process, probabilities are distributed uniformly among all ac-
tions. Every action of the controllable parameter has an equal prob-
ability. In other words, at the start, every action has an equal chance to
be chosen. At each round, the reinforcement signal updates the prob-
ability vector. This property helps to fasten up the local optima though
it may result in increased overhead in the algorithms execution time.
There are two types of learning phases; offline and online learning
phase:

1. Online learning phase updates the probability vector based on a
reinforcement signal at each iteration for N iterations.

2. Offline learning phase doesn’t update the probability vector until
the unlikely condition has occurred.

LA-OF adopts both learning phases, and the online learning phase has
been employed in the environment learning phase until the termination
condition has occurred. The offline learning phase has triggered after
the tuning of ETX, to trace the changes in the environment. Moreover, it

Fig. 3. IoT based network architecture of smart grid.

Table 3
List of notations.

Symbol Definition

α Set of inputs for automaton
β Set of outputs from automaton
a Reward factor
b Penalty factor
c Penalty Probability
E Random environment
p n( ) Average penalty condition
r Number of actions
T Mapping Function
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avoids the sudden changes that happen due to unimportant event or
temporary environmental changes.

Every node in the network assigns learning automata that work
parallel and runtime. The following configuration has been made on
each learning automata:

Set of action (α): set of finite possible actions of controllable
parameters (ETX) in which the environment is observed.

Output (β): is the reinforcement signal from the environment which
is based on the observable parameter (Packet Loss).

Model: define the type of reinforcement signal, where a P-model is
used in this research which can have two types of signals 0 or 1 (un-
favorable or favorable).

Learning Function (T): defines the rate of reward and penalty,
Linear reward penalty is used in the proposed work.

At each iteration, as shown in Fig. 4 learning automata select an
action from α and observe the environment. Then update the prob-
ability vector using learning function according to reinforcement signal
β. After the maxth (N _I terations), the action having the highest reward
will be chosen. Learning automata runs on every node parallel to learn
the expected transmission count. Learning automata learn through in-
teracting with the environment by getting a reinforcement signal. It
repeatedly updates the probability vector until the termination condi-
tion occurs. A maximum threshold is defined maxth, the learning phase
has continued until the threshold maxth (line 10, Algorithm 1) condition
occurs. After the learning period (N _I terations) has stopped the best
value is selected which yields the highest probability (line 18, Algo-
rithm 1). Therefore, learning automata will consume some extra
memory to store the probability vector to improve network perfor-
mance.

Algorithm 1. LA-OF (main function)

1: function neighbor_l ink_c allback t prpl_p arent_ * , status, numtx
2: = − >recorded_e tx nbr link_m etric
3: if = =status MAC_T X_N OACK then
4: =packet_e tx (10*RPL_D AG_M C_E TX_D IVISOR)
5: if > = =NIteration Threshold && _I tration Negative_T hreshold then
6: Reset the probability vector
7: Reset the iterations
8: end if
9: end if
10: if < =Iteration Threshold then
11: if = =packet_e tx (10*RPL_D AG_M C_E TX_D IVISOR) then
12: learning_p enalty
13: else
14: learning_r eward
15: end if
16: end if
17: if > =Iteration Threshold then
18: highest_p robability
19: end if
20: end function

Algorithm 2. LA-OF (learning automata)

Require:

E (Set of ETX values)i
P (Probability vector)i

1: function learning_r ewardETX_v alues*learn_a uto, pack_e tx
2: =a 0.1
3: for all ∈k Ei do
4: if = =k pack_e tx then
5: Increase the probability of current value with factor a
6: else
7: Decrease the probabilities of other values with factor a
8: end if
9: end for
10: end function
11: function learning_p enaltyETX_v alues*learn_a uto, packet_e tx
12: =b 0.1
13: for all ∈k Ei do
14: if = =k packet_e tx then
15: Decrease the probability of current value with factor b
16: else
17: Increase the probabilities of other values with factor b
18: end if
19: end for
20: end function
21: function highest_p robabilityETX_v alues*learn_a uto
22: choose the best value having highest probability
23: end function

The probabilities are updated on the bases of the linear reward
penalty function. On receiving a reward for the current action prob-
ability vector is updated by using Eq. (3). It increases the probability of
current action by a factor a (line 5, Algorithm 2) and decreases the
probabilities of other actions by a factor a (line 7, Algorithm 2):

+ = + −

+ = − ∀

p n p n a p n
p n p n n j

( 1) ( ) [1 ( )],
( 1) ( ) ap ( ) .

i i i

j j j (5)

While on receiving a penalty for the current action probability vector is
updated by using Eq. (6). It decreases the probability of action by a
factor b (line 15, Algorithm 2) and increases the probabilities of other
actions (line 17, Algorithm 2) by a factor b.

+ = −

+ =
−

+ − ∀

p n b p n

p n b
r

b p n j

( 1) (1 ) ( ),

( 1)
1

[(1 ) ( )] .

i i

j i (6)

wherein both Eqs. (3) and (6), p n( )i is the probability of current action,
p n( )j is the probability of other actions in probability vector and r is the
total number of actions.

After finding the best action, the learning process will stop. It may
have a negative impact on the network, for instance, when the learning
automata process is stopped, and the network is converged to a stable
state later, the environmental condition changes which cannot be
traced back to the previous stable state. To avoid this negative impact,
an offline learning phase has been triggered. It analyzes whether the
change is due to the unimportant events or not. If it is not a temporary
change, then the learning process is restarted (line 5–7, Algorithm 1).

At each iteration status of the sent packet is checked whether ACK is
received or not. If NOACK status is showing for the packet, then pe-
nalize the current ETX using Eq. (6) (lines 3, 4, 11, 12 Algorithm 1 and
lines 11–19 Algorithm 2). For example, if the probability of current
action is 0.11 after getting a penalty, it reduces to 0.099, and prob-
abilities of other actions are increased with factor 0.1. If ACK is shown
in the status, then reward the current ETX and penalize the other ac-
tions using Eq. (3) (lines 14, Algorithm 1 and lines 1–9, Algorithm 2).
For example, if the probability of current action is 0.11 after getting a
reward, its increase to 1.99 and probabilities of other actions are re-
duced by factor 0.1. After the termination condition, the best ETX value
is selected, which yields the highest probability (lines 17, 18, Algorithm
1, and lines 21, 22, Algorithm 2).

Fig. 4. Learning cycle of learning automata (α is the action; β is the re-
inforcement signal).
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4. Simulation and results

4.1. Simulation environment

The evaluation of the proposed scheme is based on simulation re-
sults that are carried on the Cooja simulator with operating system
Contiki 3.0 (Dunkels, Gronvall, & Voigt, 2004). Cooja is a widely
adopted simulator by the IoT developer to simulate their work. The
proposed work is designed for IoT based NANs in smart grids, where
mostly multi-hop mesh topology has been adopted. Therefore, for the
performance evaluation of the proposed work, the multi-hop grid to-
pology is considered, as shown in Fig. 5. The network consists of 1 sink
and 20 client nodes. Each node generates a data packet every 2 seconds.
Cooja provides unit disk graph medium (UDGM), which adds looseness
into the wireless medium, which has used to get more realistic results. It
added looseness in the medium according to the relative distances be-
tween the devices in the radio medium and made the environment non-
stationary. In UDGM, as the distance between the sender and receiver is
increases, the packet reception ratio decreases, while the reception rate
increases as the distance decrease. In our scenario, we set 100 meters
transmission range as well as interference ranges for the nodes, re-
spectively. The nodes are linearly distributed in an area of 300× 300m
in a grid topology, while the sink is placed on the top center of to-
pology. The motes that are used in the simulation are Tmote Skye,
which has microcontroller MSP430 with 2.4 GHz wireless transceiver
Chipcon CC2420 and having 8MHz processing power, 48k of ROM and
10k of RAM. The motes run Contiki 3.0 operating system and com-
pliance with communication protocol IEEE 802.15.4.

The learning automata has its configuration parameters. Learning
reward-penalty (LR-P) function is being used, which yields the equal
ratio of reward and penalty at each iteration. If the system gets a reward
or penalty on a given action, it will result in an equal penalty or reward
on other actions. The values of reward (a) and penalty (b) is set to 0.1
( = =a b 0.1) because at 0.1 WSN's gets the highest PRR as shown in
Fig. 6. The number of iterations (online learning period) is set to 25
because, after 25 iterations, the network is not getting a significant
improvement in PRR, as shown in Fig. 7. The number of negative
iterations (offline learning) was 4 because if an inconsistency is ob-
served due to unimportant event, the node will get back to the previous
state within 3–4 unsuccessful attempts. The set of ETX contains the
range of values from 1 to 9.

Energy consumption is measured through the power-traces by using
javascript. Energy consumption is the sum of energy consumed in
transmission, receiving, in processing (CPU), and the LPM mode.
Energest module is used to calculate the energy consumption. It cal-
culates the number of ticks (time) spends at each stage TX, RX, CPU,
and LPM. Eq. (7) is used to convert the number of ticks into Joules:

=
× ×

Energy Consumption
Energest_v alue Current Voltage

RTIMER_S ECONDS (7)

where Energest_v alue is the number of ticks spent at each stage Tx, Rx,
CPU, and LPM. Current is the value of the current consumed at each
stage. As Tmote Sky is used, which consumes 21,800 μAh in Trans-
mission, 19,500μAh in Receiving, 1800μAh in CPU and 5.1μAh in
LPM mode. Voltage is the battery voltage which is 3 V and
RTIMER_S ECOND is the number of ticks per second which is 32,768/s.

The packet size is set to 200 bytes, which sent every 2 seconds. The
value of the DIO interval is set to be a default of which the minimum
value is 12, and the doubling value is 8. The simulation is run for 300 s
10 times. Table 4 contains simulation and environmental parameters.

4.2. Results and analysis

4.2.1. Data reception
The packet reception ratio is being defined as the ratio of packets

received at the sink node over the packet generated from the source
node. The environmental factors greatly affect the link parameters at
the time of measuring due to unimportant events of the environment
that may lead to the wrong estimation of ETX. As link metric (ETX) has
a significant impact in PRR, fail to measure desired ETX value will
cause packet loss. The transmission ratio is set to be 50% to get more
realistic values bringing looseness in the environment. Due to the high

Fig. 5. Example topology of network (1 sink node and 20 data nodes).

Fig. 6. The effect of different reward-penalty values on PRR.

Fig. 7. The effect of different learning periods on PRR.
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rate of data traffic from source nodes, queue overflow may also affect
packet loss. Fig. 8 represents the comparative analysis of proposed work
with standardized objective function MRHOF and OF0. PRR has been
measured at every 30s-time interval. At the start, LA-OF and MRHOF
have almost identical behavior because LA-OF is in the learning phase.
At each iteration, the LA interacts with the environment to tune the ETX
accordingly. After tuning the ETX according to the environment, the
PRR of LA-OF is a significant increase as compared to MRHOF and OF0.
The LA-OF based network has experienced less packet loss due to the
exact estimation of transmission and tuning of the ETX according to the
environment. While MRHOF is unable to measure exact ETX because of
the non-stationary environment, which causes loss of packets.

Network throughput is defined as the ratio of data bytes received
over the bytes sent. Fig. 9 present the result of network throughput. The
comparison of the proposed work is made with MRHOF and OF0. The

results are taken at different data rates. The graph depicts that the
throughput of LA-OF increases with the increase in data rate. The
network throughput of the proposed OF is high as compared to MRHOF
and OF0 because they are unable to measure desired ETX due to a
random environment. For that reason, the less data loss in LA-OF due to
the stable and tuned ETX according to the environment and non-sta-
tionary environment lead other approaches towards the wrong esti-
mation. Furthermore, the increase of data rate the LA-OF achieves
higher throughput as compared to other OF's, and It indicates that
controlling link metrics has a great impact on network throughput. The
graphs also depict that at 160 packets, LA-OF achieves 7.04% higher
throughput as compared to MRHOF.

4.2.2. Energy consumption
Network energy consumption is the measure of the average con-

sumption of energy over time of all nodes in the network. The com-
parison of proposed LA-OF with MRHOF and OF0 is presented in
Fig. 10. The network EC is measured in the time intervals of 30 s. At the
start, the environment is observed where LA-OF integrated nodes are
learning the environment under different uncertainties. The LA-OF
tunes the ETX according to the environment considering the un-
certainty, with that the energy consumption of the network is observed
less as compared to other OFs. The reason for being less consumption is
the fine-tuning of ETX, so nodes attempt an exact number of re-trans-
missions rather than the extra unnecessary transmissions. The other
reason is the control packets, which have the extra burden on the
network. Due to the stable link metric, fewer control packets are being
sent, as shown in Fig. 13. This will limit the radio to consumes extra
energy by preventing redundant transmission and reception. The other
objective functions (MRHOF and OF0) consume more energy because
they are unable to trace down the non-stability of the environment.
Overall, LA-OF made 17.52% improvement as compared to MRHOF and
OF0.

The network lifetime is defined as; for how long nodes can be alive
without charges or replacement of the battery. The initial energy of
each node is set to be 20 J, and the remaining energy is measured every
30 s. While the nodes with having energy less than 0.025 J is considered
to be dead. The comparative analysis of LA-OF with MRHOF and OF0
has been shown in Fig. 11. It is observed that the network lifetime of the
proposed OF is greater as compared to other OF's. This is because of the
improvement in the estimation of the link metric according to the en-
vironment. LA-OF conserve the energy by limiting the transmissions

Table 4
Simulation parameters.

Parameters Values

Simulator Cooja Contiki 3.0
Simulation area 300× 300m
Traffic type CBR
Number of nodes 20
Transmission mode Storing
Transmission range 100m
Interference range 100m
Packet format IPv6
Mote type Tmote Sky
Microcontroller MSP430
Initial energy 20 J
Reward value 0.1
Penalty value 0.1
Energy module ENERGEST
TX energy consumption 21,800μAh
RX energy consumption 19,500μAh
CPU energy consumption 1800 μAh
LPM energy consumption 5.1μAh
DIO MIN 12
DIO doubling 8
MAC IEEE 802.15.4
Simulation time 300 s
Radio model UDGM

Fig. 8. Data reception at root node over time, PPR at different time intervals.

Fig. 9. Network throughput under different traffic load.

Fig. 10. Network energy consumption with respect to time.
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through, adjusting the exact number of transmissions, and having fewer
control packets. Therefore, the conservation of energy will allow the
nodes to be active for a longer time. Therefore, this will improve a
lifetime of the LA-OF based network as compared to MRHOF and OF0.

The number of packets a node can transmit before being dead is
defined as node lifetime. The only successful transmitted packets have
been considered. Fig. 12 presented the comparison of LA-OF with
MRHOF and OF0. The node with the proposed OF has a higher number
of transmissions as compared to other OF0's. The reason for that is the
fine-tuning of ETX helps the nodes to conserve energy by avoiding
unnecessary transmissions. The conservation of energy in LA-OF allows
the node to transmit more packets as compare to MRHOF and OF0.

4.2.3. DIO overhead
DIO overhead is caused by the packets used to create and maintains

the network topology. DIO is the control packet used in RPL for the
construction and maintaining of topology. Every node broadcasts the
DIO packet periodically using the trickle algorithm to keep other nodes
updated about its status. If the link parameters are stable, the frequency
of the DIO packets will be reduced through increasing the DIO interval
with factor 8.

The proposed OF is compared with MRHOF and OF0, as shown in
Fig. 13. The results depict that the proposed technique has less DIO
overhead as compared to the other objective functions. This is because
the LA-OF learns and tunes the ETX according to the environment,

which stabilizes the link parameter. As it was discussed, the stable link
metric increases the tickle timer, which reduces the frequency of the
DIO packets. For that reason, LA-OF made an 18.72% improvement in
DIO overhead as compared to MRHOF and OF0.

4.2.4. Packet delay
To measure the packet delay, we have considered two delay metrics;

network delay and End-to-end delay. End-to-end delay is the average
packet delay measured from a specific source node to the sink. While
the network delay is the average packet delay observed from source to
destination in the whole network. The delay is measured from the
packet generated by the node to a packet received successfully at the
root node. Figs. 14 and 15 presents the evaluation of End-to-End and
Network delay. The results demonstrate that LA-OF perform little better
than MRHOF.

In Fig. 14, the delay is measured at a different packet rate, where the
proposed OF performs marginally better than MRHOF. The LA-OF
measures the exact estimation of the link metric, which helps to reduce
the transmission delay. On the other hand, in Fig. 15 is the measure of
delay over the simulation time of 300 seconds. In the learning phase,
both LA-OF and MRHOF have the same response. However, when the
LA-OF tunes the ETX, it helps to reduce transmission delay; conse-
quently, the LA-OF performs marginally better. The reason for not
having significant improvement in delay, because the node metrics (i.e.,
queuing delay) have a great impact on the packet.

5. Conclusion

IoT standards are integrated with sustainable cities to offer services
to sustainable communities. This research address the challenge of the
dynamic and lossy environment on the routing protocol in the neigh-
borhood area network of smart grids, where standardized objective
functions of RPL were not able to deal with it. To overcome this issue,
we integrated learning automata with OF to tune the link metric (ETX)
through learning the environment. It learns through interacting with
the environment for specific iterations in order to measure the best ETX.
LA adopts the learning reward-penalty mechanism, which updates the

Fig. 11. Number of nodes dead over time.

Fig. 12. Total packet transmitted without charging a battery.

Fig. 13. The total number of DIO packets sent (300 s).

Fig. 14. The average end-to-end delay of packet over traffic load.

Fig. 15. The average packet delay with respect to time.
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probability vector at each iteration and yields the best ETX by re-
peatedly interacting with the environment. The ETX table is then fed
with the best ETX value for each neighbor node, and the preferred
parent table is updated as well. After the convergence of LA, the
monitoring of the environment is continued in the background to trace
down the instability in a network. The proposed LA-OF tune ETX ac-
cording to the environment, which improves the performance metrics,
i.e., packet reception ratio, energy consumption, and control overhead,
which are key metrics to consider for smart grids. We simulated our
proposed work in Cooja with Contiki 3.0. The results show that our
work outperformed the standardized objective function MRHOF and
OF0. The proposed technique also has significantly improved packet
reception ratio and throughput. Moreover, it reduces energy con-
sumption and DIO control overhead.

In the future, this scheme can be enhanced further if the learning
automata applies to the multiple network metrics, and decisions are
taken on the basis of their utility function.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgement

This research was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education (2018R1D1A1A09082266) and by the MSIT
(Ministry of Science and ICT), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2020-2016-0-
00313) supervised by the IITP (Institute for Information &
Communications Technology Planning & Evaluation).

References

Abujubbeh, M., Al-Turjman, F., & Fahrioglu, M. (2019). Software-defined wireless sensor
networks in smart grids: An overview. Sustainable Cities and Society, 101754.

Al-Turjman, F., & Malekloo, A. (2019). Smart parking in iot-enabled cities: A survey.
Sustainable Cities and Society, 101608.

Al-Turjman, F. (2020). Intelligence and security in big 5g-oriented iont: An overview.
Future Generation Computer Systems, 102, 357–368.

Ancillotti, E., Vallati, C., Bruno, R., & Mingozzi, E. (2017). A reinforcement learning-
based link quality estimation strategy for RPL and its impact on topology manage-
ment. Computer Communications, 112, 1–13.

Aziz, M. (2019). On multi-armed bandits theory and applicationsNortheastern University
(Ph.D. thesis).

Bahramlou, A., & Javidan, R. (2018). Adaptive timing model for improving routing and
data aggregation in internet of things networks using RPL. IET Networks, 7(5),
306–312.

Bhandari, K., Hosen, A. S. M. S., & Cho, G. (2018). Coar: Congestion-aware routing
protocol for low power and lossy networks for iot applications. Sensors, 18(11), 3838.

Bibri, S., & Krogstie, J. (2017). On the social shaping dimensions of smart sustainable
cities: A study in science, technology, and society. Sustainable Cities and Society, 29,
219–246.

Bibri, S. E. (2018). The iot for smart sustainable cities of the future: An analytical fra-
mework for sensor-based big data applications for environmental sustainability.
Sustainable Cities and Society, 38, 230–253.

Cao, Y., & Wu, M. (2018). A novel RPL algorithm based on chaotic genetic algorithm.
Sensors, 18(11), 3647.

Chen, S., Xu, H., Liu, D., Hu, B., & Wang, H. (2014). A vision of iot: Applications, chal-
lenges, and opportunities with china perspective. IEEE Internet of Things journal, 1(4),
349–359.

Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki – A lightweight and flexible oper-
ating system for tiny networked sensors. 29th annual IEEE international conference on
local computer networks, 455–462.

Fabian, P., Rachedi, A., Gueguen, C., & Lohier, S. (2018). Fuzzy-based objective function
for routing protocol in the internet of things. 2018 IEEE global communications con-
ference (GLOBECOM), 1–6.

Ghaleb, B., Al-Dubai, A., Ekonomou, E., Gharib, W., Mackenzi, L., & Khala, M. B. (2018).
A new load-balancing aware objective function for RPL’S iot networks. 2018 IEEE
20th international conference on high performance computing and communications; IEEE
16th international conference on smart city; IEEE 4th international conference on data
science and systems (HPCC/SmartCity/DSS), 909–914.

Gnawali, O., & Levis, P. (2012). The minimum rank with hysteresis objective function Report
2070-1721.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (iot): A
vision, architectural elements, and future directions. Future Generation Computer
Systems, 29(7), 1645–1660.

Hui, J., & Vasseur, J. P. (2012). The routing protocol for low-power and lossy networks (RPL)
option for carrying RPL information in data-plane datagrams Report 2070-1721.

Intel (2018). A guide to internet of things. https://www.intel.com/content/www/us/en/
internet-of-things/infographics/guide-to-iot.html.

Javed, F., Afzal, M. K., Sharif, M., & Kim, B.-S. (2018). Internet of things (iot) operating
systems support, networking technologies, applications, and challenges: A com-
parative review. IEEE Communications Surveys & Tutorials, 20(3), 2062–2100.

Kamgueu, P. O., Nataf, E., & Ndie, T. D. (2018). Survey on RPL enhancements: A focus on
topology, security and mobility. Computer Communications, 120, 10–21.

Kechiche, I., Bousnina, I., & Samet, A. (2019). A novel opportunistic fuzzy logic based
objective function for the routing protocol for low-power and lossy networks. 2019
15th international wireless communications & mobile computing conference (IWCMC),
698–703.

Lamaazi, H., & Benamar, N. (2018). Of-ec: A novel energy consumption aware objective
function for RPL based on fuzzy logic. Journal of Network and Computer Applications,
117, 42–58.

Lamaazi, H., El Ahmadi, A., Benamar, N., & Jara, A. J. (2019). Of-ecf: A new optimization
of the objective function for parent selection in RPL. 2019 international conference on
wireless and mobile computing, networking and communications (WiMob), 27–32.

Lee, I., & Lee, K. (2015). The internet of things (iot): Applications, investments, and
challenges for enterprises. Business Horizons, 58(4), 431–440.

Levis, P., Clausen, T., Hui, J., Gnawali, O., & Ko, J. (2011). The trickle algorithm Report
2070-1721.

Narendra, K. S., & Thathachar, M. A. L. (1974). Learning automata – A survey. IEEE
Transactions on Systems, Man, and Cybernetics, (4), 323–334.

Narendra, K. S., & Thathachar, M. A. L. (2012). Learning automata: An introduction.
Courier Corporation.

Nassar, J., Gouvy, N., & Mitton, N. (2017). Towards multi-instances QOS efficient RPL for
smart grids. Proceedings of the 14th ACM symposium on performance evaluation of
wireless ad hoc, sensor, & ubiquitous networks, 85–92.

Papathanasiou, J., & Ploskas, N. (2018). Topsis. Multiple criteria decision aid. Springer1–30.
Sailaja, K., & Rohitha, M. (2018). Literature survey on real world applications using in-

ternet of things. 2018 IADS international conference on computing, communications &
data engineering (CCODE).

Schulz, P., Matthe, M., Klessig, H., Simsek, M., Fettweis, G., Ansari, J., Ali Ashraf, S.,
Almeroth, B., Voigt, J., Riedel, I., et al. (2017). Latency critical iot applications in 5g:
Perspective on the design of radio interface and network architecture. IEEE
Communications Magazine, 55(2), 70–78.

Sethi, P., & Sarangi, S. R. (2017). Internet of things: architectures, protocols, and appli-
cations. Journal of Electrical and Computer Engineering, 2017.

Taghizadeh, S., Bobarshad, H., & Elbiaze, H. (2018). Clrpl: Context-aware and load bal-
ancing RPL for iot networks under heavy and highly dynamic load. IEEE Access, 6,
23277–23291.

ten Have, H., & Gordijn, B. (2020). Sustainability.
Thubert, P. (2012). Objective function zero for the routing protocol for low-power and lossy

networks (RPL) Report 2070-1721.
Unsal, C. (1998). Intelligent navigation of autonomous vehicles in an automated highway

system: Learning methods and interacting vehicles approach.Virginia Tech (Ph.D. thesis).
Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2012). A survey on smart grid communication

infrastructures: Motivations, requirements and challenges. IEEE Communications
Surveys & Tutorials, 15(1), 5–20 ISSN 1553-877X.

Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer
Networks, 52(12), 2292–2330.

Zier, A., Abouaissa, A., & Lorenz, P. (2018). E-rpl: A routing protocol for iot networks.
2018 IEEE global communications conference (GLOBECOM), 1–6.

A. Saleem, et al. Sustainable Cities and Society 59 (2020) 102234

11

http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0005
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0005
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0010
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0010
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0015
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0015
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0020
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0020
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0020
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0025
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0025
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0030
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0030
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0030
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0035
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0035
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0040
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0040
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0040
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0045
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0045
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0045
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0050
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0050
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0055
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0055
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0055
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0060
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0060
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0060
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0065
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0065
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0065
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0070
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0070
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0070
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0070
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0070
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0075
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0075
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0080
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0080
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0080
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0085
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0085
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0095
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0095
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0095
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0100
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0100
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0105
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0105
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0105
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0105
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0110
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0110
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0110
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0115
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0115
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0115
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0120
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0120
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0125
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0125
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0130
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0130
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0135
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0135
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0140
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0140
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0140
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0145
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0150
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0150
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0150
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0155
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0155
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0155
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0155
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0160
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0160
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0165
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0165
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0165
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0170
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0175
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0175
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0180
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0180
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0185
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0185
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0185
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0190
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0190
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0195
http://refhub.elsevier.com/S2210-6707(20)30221-3/sbref0195

	Intelligent learning automata-based objective function in RPL for IoT
	Introduction
	Motivation
	Contribution

	Related work
	Background
	RPL control messages
	Objective function (OF)
	RPL topology

	Existing enhancements in RPL

	The proposed work
	Learning automata
	Proposed LA-OF

	Simulation and results
	Simulation environment
	Results and analysis
	Data reception
	Energy consumption
	DIO overhead
	Packet delay


	Conclusion
	Conflict of interest
	Acknowledgement
	References




