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Abstract
Cardiac diseases constitute a major root of global mortality and they are likely to persist. Electrocardiogram (ECG) is
widely opted in clinics to detect countless heart illnesses. Numerous artifacts interfere with the ECG signal, and their
elimination is vital to allow medical specialists to acquire valuable statistics from the ECG. The utmost artifact that is
added to the ECG signal is power line interference (PLI). Numerous filtering methods have been employed in the
literature to eliminate PLI from noisy ECG. This article proposes an extended Kalman filter (EKF)-based adaptive
noise canceller (ANC) that comprises PLI frequency as a distinct model parameter. Thus, it is capable of tracking
PLI with drifting frequency. The proposed canceller’s performance is compared with state-space recursive least
squares (SSRLSs) filter-based PLI canceling. The evaluation is carried out for four cases of PLI, that is, PLI with
known amplitude and frequency, PLI with unknown amplitude and frequency, PLI with drifting amplitude and fre-
quency, and PLI removal from a real-time ECG recording. The samples of the Massachusetts Institude of Technology
(MIT)-Boston’s Beth Israel Hospital (BIH) arrhythmia database are considered for the first three cases, whereas, for the
fourth case, real ECG signal is taken from armed forces institude of cardiology, the national institude of heart dis-
eases (AFIC/NIHD), Pakistan. Mean square error, frequency spectrum, and noise reduction are selected as perfor-
mance metrics for comparison. Simulation results depict that the presented EKF-based ANC system outperforms
the SSRLS-based ANC system and effectively eliminates PLI from ECG under all four investigated scenarios.
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Introduction
Physicians consider an electrocardiogram (ECG) to di-
agnose numerous cardiovascular maladies for checking
the heartbeat’s electric activity. The individual cycle of
this electrical activity entails T wave, Q, R, and S waves
(QRS) complex, and P wave. Any variation in these quan-
tities designates abnormal working of the myocardium.

Signal processing is considered to be the utmost pre-
carious tool in biomedical engineering. Development in
this field has been directed to proficient noninvasive di-
agnosis and virtual nursing of patients. Some artifacts
that corrupt the ECG include baseline wander (BW),
power line interference (PLI), and electromyography
noise (EMG). Among all the most disturbing is PLI,
which is the focus of research in this article. The spectral

band of ECG signal (between 0.5 and 100 Hz) includes
the frequency spectrum of PLI, that is, between 48 and
52 Hz, thus making PLI abolition from ECG critical.
The ambition is to extract the degraded ECG signal with-
out upsetting the spectrum/useful ECG signal statistics.

Many filtering techniques are reported in the past to
eradicate these noises.1 Finite impulse response (FIR)
and infinite impulse response (IIR) filters are applied
to ECG signals for eliminating PLI.2 Butterworth filter
is deployed to reduce PLI from a degraded ECG signal.3

The IIR notch filter was used to remove PLI from
ECG.4 It was found that a notch filter can successfully
remove PLI for a fixed frequency and fails for drifting
frequency. However, these filters’ performance is re-
strained in the presence of drifting frequency of PLI.5
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In the nonstationary environment, adaptive filters
are utilized due to their ability to recursively upgrade
their parameters.6 Therefore, adaptive filters are used
for overcoming this problem. Dhillon et al.6 suggested
an IIR adaptive notch filter (ANF) for removing noise
from the real-time ECG signal. Different PLI mitiga-
tion algorithms are compared and result in improved
algorithms’ superior performance than notch filters
and spectral interpolations.7 Designing an optimal iter-
ative learning solution is a big task for linear and non-
linear complex systems.8,9 For noise eradication from
an ECG signal, adaptive noise annulment has become
the utmost effective approach.

Therefore, in this research article, we have suggested
an extended Kalman filter (EKF)-based adaptive noise
canceller (ANC) system that incorporates PLI fre-
quency as a distinct model parameter. Thus, it is capa-
ble of tracking PLI with drifting frequency as well. The
cases under consideration are as follows: PLI with
known amplitude and known frequency, PLI with un-
known amplitude and unknown frequency, PLI with
unknown drifting amplitude and unknown drifting
frequency, and real-time PLI corrupted ECG. The com-
parison of the proposed solution with state-space re-
cursive least square (SSRLS) algorithm-based ANC
for the four different cases of PLI in terms of mean
square error (MSE), noise reduction (NR), and the
frequency spectrum is presented.

In the first three cases, both SSRLS and EKF are
employed to remove MATLAB generated PLI from
PLI corrupted ECG. In the fourth case, the real ECG
signal is acquired from the Armed Forces Institute of
Cardiology, the National Institute of Heart Diseases
(AFIC/NIHD), Pakistan, and the earlier-mentioned
adaptive algorithm is used to suppress PLI. Simulation
results depict that the presented EKF-based ANC sys-
tem outperforms the SSRLS-based ANC system and ef-
fectively eliminates PLI from the ECG signal against
the earlier-mentioned four investigated scenarios.

This article is structured as follows: The Related
Work section briefly describes the literature review
of related work carried out. The Methods and Materi-
als section explains the proposed mathematical
model for PLI, the basic working mechanism of an
ANC system, a mathematical model of literature-
reported SSRLS-based ANC system, and a proposed
EKF-based ANC system for PLI cancellation. The
Simulation Results section suggests the PLI cancella-
tion performance of the proposed EKF-based ANC
system and its performance comparison with the

SSRLS-based ANC system for all four PLI cases in
terms of MSE, NR, and frequency spectrum. Finally,
the Conclusion section concludes the article.

Related Work
When the PLI parameters are known, notch filters are
the most appropriate solution. The IIR-based notch
filters are preferred compared with other FIR and But-
terworth notch filters due to their small filter order.
However, the notch filters suffer from their impulse re-
sponse’s ringing effect due to narrow bandwidth and
distorted frequency spectrum.10 Further, a tunable
notch filter was introduced, which could tune its fre-
quency but could not trial variable frequency.11 Thus,
an ANF was designed to modify the tunable notch
filter.12 The least mean square (LMS) algorithm fits
to this group.13,14

Another ANF of sharp resolution is reported for
mitigating PLI from ECG signal.15 The fast Fourier
transform is done on the input signal in the proposed
method. This proposed ANF method preserves the
QRS complex features in filtered signals better than
the conventional notch filter. The LMS algorithm is
widely used but exhibits low convergence and wider
bandwidth. Recursive least square (RLS) algorithm per-
forms better than LMS and notch filters but at the cost
of high computational complexity.

A novel method for ECG denoising using adaptive
filters is designed for real-time application and relies
on the upcoming ECG signal without the need for a ref-
erence noise signal.16 The proposed solution’s verifica-
tion is done using three adaptive algorithms, that is,
LMS, normalized NLMS, and Leaky LMS.

Another method, ANC was reported to eradicate PLI
from the ECG.17 Researchers found that ANC works
efficiently in the case of fixed PLI parameters but be-
haves like a conventional notch filter when the PLI
parameter was unknown. That is, ANC converges to
some arbitrary PLI frequency. Maniruzzaman et al.18

presented the LMS algorithm-based ANC for eradicat-
ing PLI from the ECG signal. Different variants of the
LMS algorithm are investigated and compared.19–22

Further, Mugdha et al.23 successfully suppressed PLI
by testing and comparing the RLS algorithm with
LMS. Biswas and Maniruzzaman24 compared the
NLMS adaptive filter performance and RLS adaptive
filter with notch filter in both the time and frequency
domain for PLI removal from ECG. The RLS exhibited
better tracking than NLMS, but the signal-to-noise
ratio (SNR) of NLMS was better.
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Another technique was proposed by combining the
moving average and conventional notch filtering.2

This technique exhibited less complexity, small filter
order, and ringing effect. However, important ECG
data were lost in the buffering stage before filtering.
Tong et al. introduced an ANC based on a lock-in am-
plifier.25 In this technique, ECG was smoothened by
the Hanning window method and then filtered by
FIR notch filter. Further, this technique was modified
and used to remove PLI noise from ECG.26 The mod-
ification was the replacement of the FIR notch filter
with wavelet transform, which produced better results
while removing PLI from ECG.

Another technique was introduced,27 which utilized
averaging for ECG smoothening, and then the Kalman
algorithm was used to confiscate PLI from ECG. A par-
abolic filter was implemented for denoising ECG.28 The
performance analysis exhibited good performance of
parabolic filters in comparison to investigated filters.

Another technique proposed based on discrete
wavelet transform and adaptive filtering is compared
in the time and frequency domain with the existing
notch filter for removing PL from the ECG signal.29

Singhal et al.30 proposed another less complex
method based on the Fourier decomposition method
(FDM) to separate both BW and PLI concurrently
from the recorded ECG and acquire clean ECG data.
The proposed method identifies the coefficients of dis-
crete Fourier transform or discrete cosine transform re-
garding BW and PLI and then suppressed from
optimally designed FDM based on a zero-phase filtering
approach. The simulations verify the improved perfor-
mance of the suggested method compared with other
techniques at various SNR values. A hybrid method
comprising median, Savitzky–Golay, and wavelet trans-
form is proposed for NR from the ECG signal.31 The
simulations performed on different records from the
standard Massachusetts Institute of Technology
(MIT)-Boston’s Beth Israel Hospital (BIH) arrhythmia
database depicted an improved SNR by a proposed hy-
brid method compared with other reported techniques.

A nonlinear adaptive filter with less complexity was
reported for removing PLI from ECG without an exter-
nal reference signal.32 Adaptive sinusoidal interference
canceller is proposed,33 where the frequency of sinusoi-
dal noise is known. The Kalman filter (KF) was opted
to eradicate PLI from ECG.34 KF is designed for linear
state transitions. Therefore, results achieved by KF for
varying PLI frequency cases were not comparable with
the existing adaptive filters.

Keshavamurthy and Eshwarappa35 removed various
artifacts from ECG by using an EKF and singular value
decomposition. The reference noise affects the filtering
performance of LMS and RLS algorithms. Mostly, it is
difficult to procure extremely correlated original noise.
However, state-space adaptive filters are independent
of reference noise input.36,37 Researchers mitigated im-
pulsive, BW, and PLI from degraded ECG by opting
SSRLS.38–44 It is very effective in mitigating 50 Hz sinu-
soidal noise irrespective of information about adaptive
filter parameters but at a cost of high complexity.

An EKF and genetic algorithm-based PLI elimina-
tion method from corrupted ECG is presented.45 A ge-
netic algorithm tunes the EKF parameters, and then the
EKF algorithm is used to track two different cases of
PLI, one with varying amplitude and the other with
varying frequency. However, the research presented
by Li et al.27 only tested the proposal for two simulated
PLI cases and provided no comments about its behav-
ior on the signal acquired from a real ECG source.

A fixed lag EKF smoother (KS) is used to eradicate
PLI from ECG.46 The reported work is tested on simu-
lated PLI as well as real ECG data having PLI, and a
comparison with IIR Notch, LMS, and EKF algorithms
is performed. However, the presented KS fails to track
PLI with drifting frequency. We quote from, ‘‘Instead
of assuming a fixed PLI frequency, for future work, it
might be interesting to develop a KS for a model that
includes the PLI frequency as a separate model param-
eter. Note, however, that in this case, the expression in
Eq. (2) would no longer be valid, and the model be-
comes nonlinear.’’28

Methods and Materials
Noise modeling
To eliminate noise, adaptive filters require a mathemat-
ical model of the noise. This section explains the devel-
oped mathematical model for PLI. PLI may be modeled
in continuous time as

XPLI tð Þ = asin 2pfLtþØÞð (1)

where fL, Ø, að Þ are the frequency, phase, and ampli-
tude of PLI, respectively, and t is the continuous time
index.

Our proposed ANC uses two PLI models in series:
first to compute the PLI frequency (fL) and second
to compute the PLI amplitude (a).

PLI model for frequency (fL) estimation. To track the
frequency of PLI, we have modeled PLI frequency as a
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separate model parameter. Thus, the developed fre-
quency estimation model is a 3rd-order model with
three states in state space defined as:

x1 tð Þ= asin 2pfLtþØð Þ (2:1)

x2 tð Þ = acos 2pfLtþØð Þ (2:2)

x3 tð Þ = fL (2:3)

The first-order differential equations of these states
are calculated by taking the derivative of Eqs. (2.1–2.3):

x1
:

tð Þ = 2pfL�acos 2pfLtþ Øð Þ (3:1)

x2
:

tð Þ = � 2pfL�asin 2pfLtþ Øð Þ (3:2)

x3
:

tð Þ= 0 (3:3)

These differential equations can be written in matrix
form by taking Jacobian of the process model described
by Eqs. (3.1–3.3).

x1
:

tð Þ
x2
:

tð Þ
x3
:

tð Þ

2
4

3
5 =

0 2px3 tð Þ 2px2 tð Þ
� 2px3 tð Þ 0 � 2px1 tð Þ

0 0 0

2
4

3
5 x1 tð Þ

x2 tð Þ
x3 tð Þ

2
4

3
5
(4)

From Eq. (4), the system state matrix of the PLI
model is:

F =
0 2px3 tð Þ 2px2 tð Þ

� 2px3 tð Þ 0 � 2px1 tð Þ
0 0 0

2
4

3
5 (5)

This system state matrix is used to calculate the state
transition matrix using the following equation:

A = L� 1 sI� Fð Þ� 1
(6)

where L represents Laplace transform, and I represents
a 3 · 3 identity matrix. Hence, the state transition
matrix for the frequency estimation of PLI is repre-
sented as:

A =
cos 2pfLt sin 2pfLt A13

� sin 2pfLt cos 2pfLt A23

0 0 1

2
4

3
5 (7:1)

where A13 and A23 are:

A13 =
x1 tð Þ cos 2pfLtþ x2 tð Þ sin 2pfLt)

f
� x1 tð Þ

f
(7:2)

A23 =
x2 tð Þ cos 2pfLt� x1 tð Þ sin 2pfLt)

f
� x2 tð Þ

f
(7:3)

PLI model for amplitude (a) estimation. To estimate
the amplitude of PLI, the 2nd-order PLI model is devel-
oped, and the two states in state space are defined in
continuous time as:

x1 tð Þ = asin 2pfLtþ Øð Þ (8:1)

x2 tð Þ = acos 2pfLtþ Øð Þ (8:2)

where fL is the frequency estimated from the frequency
estimation model presented in the previous subsection.
According to trigonometric identities, we know that:

sin aþ bð Þ = sin a cos bþ cos a sin b (9:1)

cos aþbð Þ = cos a cos b� sin a sin b (9:2)

Using trigonometric identities, considering a = 2pfLt
and b = Ø in Eq. (8), we can write Eq. (8) as:

x1 tð Þ = a sin 2pfLt cos Øþ cos 2pfLt sin Øð Þ (10:1)

x2 tð Þ = a cos 2pfLt cos Ø� sin 2pfLt sin Øð Þ (10:2)

At time t = 0, Eq. (10) can be written as:

x1 0ð Þ = a sin Ø (11:1)

x2 0ð Þ = a cos Ø (11:2)

Using the results of Eq. (11), we can write Eq. (1) in
matrix form as:ø

x1 tð Þ
x2 tð Þ

� �
= cos 2pfLt sin 2pfLt
� sin 2pfLt cos 2pfLt

� �
a sin Ø
a cos Ø

� �
(12)

From Eq. (11), we can rewrite Eq. (12) as:

x1 tð Þ
x2 tð Þ

� �
= cos 2pfLt sin 2pfLt
� sin 2pfLt cos 2pfLt

� �
x1 0ð Þ
x2 0ð Þ

� �
(13)

Converting Eq. (13) from continuous form to dis-
crete form by replacing t with k on the left side and
replacing t with kT on the right side of the equation,
we may rewrite Eq. (13) as:

x1 k½ �
x2 k½ �

� �
= cos 2pfLkT sin 2pfLkT
� sin 2pfLkT cos 2pfLkT

� �
x1 0½ �
x2 0½ �

� �
(14)

where k is the discrete-time index, and T is the sam-
pling time.

For k = 1, Eq. (14) gives:
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x1 1½ �
x2 1½ �

� �
= cos 2pfLT sin 2pfLT
� sin 2pfLT cos 2pfLT

� �
x1 0½ �
x2 0½ �

� �
(15)

For k = 2, states can be calculated recursively by
using Eq. (15).

x1 2½ �
x2 2½ �

� �
= cos (2pfLT:2) sin (2pfLT:2)

� sin (2pfLT:2) cos 2pfLT:2ð Þ

� �
x1 0½ �
x2 0½ �

� �
(16)

x1 2½ �
x2 2½ �

� �
=

cos 2pfLT þ 2pfLTð Þ sin 2pfLT þ 2pfLTð Þ
� sin 2pfLT þ 2pfLTð Þ cos 2pfLT þ 2pfLTð Þ

� �

x1 0½ �
x2 0½ �

� �

(17)

Using Eqs. (9.1–9.2), we get

x1 2½ �
x2 2½ �

� �
=

cos 2pfLT sin 2pfLT

� sin 2pfLT cos 2pfLT

� �

cos 2pfLT sin 2pfLT

� sin 2pfLT cos 2pfLT

� � (18)

From Eq. (15), we can write Eq. (18) as:

x1 2½ �
x2 2½ �

� �
= cos 2pfLT sin 2pfLT
� sin 2pfLT cos 2pfLT

� �
x1 1½ �
x2 1½ �

� �
(19)

For k = 3, we write Eq. (14) as:

x1 3½ �
x2 3½ �

� �
= cos (2pfLT:3) sin (2pfLT:3)

� sin (2pfLT:3) cos 2pfLT:3ð Þ

� �
x1 0½ �
x2 0½ �

� �
(20)

x1 3½ �
x2 3½ �

� �
= cos 2pfLTþ2pfLT:2ð Þ sin 2pfLTþ2pfLT:2ð Þ
� sin 2pfLTþ2pfLT:2ð Þ cos 2pfLTþ2pfLT:2ð Þ

� �

(21)

Using Eqs. (9.1–9.2), we get

x1 3½ �
x2 3½ �

� �
=

cos 2pfLT sin 2pfLT

� sin 2pfLT cos 2pfLT

� �

cos (2pfLT:2) sin (2pfLT:2)

� sin (2pfLT:2) cos 2pfLT:2ð Þ

� � (22)

Using Eq. (16), Eq. (22) becomes:

x1 3½ �
x2 3½ �

� �
= cos 2pfLT sin 2pfLT
� sin 2pfLT cos 2pfLT

� �
x1 2½ �
x2 2½ �

� �
(23)

From Eqs. (15–23), we can generalize the model as:

x1 kþ 1½ �
x2 kþ 1½ �

� �
= cos 2pfLT sin 2pfLT
� sin 2pfLT cos 2pfLT

� �
x1 k½ �
x2 k½ �

� �
(24)

Hence, from Eq. (24), the state transition matrix for
amplitude estimation will be:

A = cos 2pfLT sin 2pfLT
� sin 2pfLT cos 2pfLT

� �
(25)

Adaptive noise canceller
ANC is widely employed in biomedical signal process-
ing. It removes various artefacts based on their adaptive
algorithm. Figure 1 displays the elementary working of
our proposed EKF-based ANC.

As defined in Eq. (1), we must estimate a and fL of
PLI noise, recursively estimate and remove PLI from
the corrupted ECG signal.

The ANC entails primary signal s kð Þ and noise real-
ization n kð Þ as two inputs. The primary signal com-
prises pure ECG. The PLI-corrupted ECG signal d kð Þ
is provided to the adaptive algorithm. The ANC
works in two stages: In the first stage, the adaptive al-
gorithm uses the PLI model illustrated in Eq. (7) to
compute PLI frequency by tracing the periodic PLI sig-
nal in the corrupted ECG. In the second stage, this cal-
culated frequency is fed back to the adaptive algorithm
that uses the PLI model given in Eq. (24) to estimate
PLI noise’s amplitude. The ANC produces a noiseless
signal by deducting the calculated PLI from the pri-
mary input. The investigated adaptive algorithms in
this research are briefly explained next:

SSRLS algorithm
The SSRLS algorithm-based ANC is reported in litera-
ture to eliminate PLI from ECG. The SSRLS algorithm
computes PLI by using its sinusoidal state-space
model.38–44 In this research work, performance com-
parison of the SSRLS-based ANC is carried out with
our proposed EKF-based ANC for all four cases of
PLI. The SSRLS is implemented in series; first, the fre-
quency and then the amplitude of PLI is estimated. The
sinusoidal model is provided to the SSRLS algorithm
for frequency, and amplitude estimation is represented
by Eqs. (7) and (24), respectively.

The PLI disturbance is modeled in state space as:

x kþ 1½ � = A k½ �x k½ � (26)

y k½ � = C k½ �x k½ � þ v k½ � (27)

where A is calculated from Eq. (6) and C = 1 0 0½ �
for frequency estimation. For amplitude estimation, A
is calculated by using Eq. (25) and C = [1 0].

Form II of the SSRLS algorithm is precisely pre-
sented in Eqs. (28–33), and Table 1 depicts the descrip-
tion of variables involved in it.32

38 TAHIR ET AL.
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A x̂ k½ � = �x k½ � þK k½ �e k½ � (28)

A �x k½ � = A x̂ k� 1½ � (29)

e k½ � = y k½ � � �y k½ � (30)

�y k½ � = CA x̂ k� 1½ � (31)

K k½ � = /� 1 k½ �CT (32)

/ k½ � = kA�T/ k� 1½ �A� 1þ CT C (33)

Extended Kalman filter
The EKF engages a sequence of measurements and
considers that process and measurement to guess
and approximate the states of the system. It has
been considered as the most favorable solution
to many estimation problems.47 The EKF algorithm
comprises two steps: prediction and correction. In
the prediction step, states are propagated for-
ward by using the nonlinear system model. The
state prediction x̂� and the error covariance matrix
P�K are updated recursively by using the following
equations:

x̂�K = Ax̂k� 1 (34)

P�K = APK � 1þ PK � 1AT þQK (35)

where A is the state transition matrix, and QK is a pos-
itive definite matrix representing the covariance of the
process noise.

In the correction step, the expected measure-
ment is calculated by using the predicted states
in the measurement model h x̂�ð Þ, which is then
subtracted from the actual sensor measurement
(yK) to find the error signal yK � h x̂�ð Þð Þ. The
updated state estimate and the error covariance ma-
trix are computed by using this error signal and the
Kalman gain (KK). The equations for these parame-
ters are given next:

KK = P�K HT HP�K HT þRK
� �� 1

(36)

x̂K = x̂�K þKK yK � h x̂�K

� �� �
(37)

PK = I�KK Hð ÞP�K (38)

The covariance matrices for EKF are calculated by
using the following expressions:

RK = r2
x (39)

QK =
ðTs

0

u sð ÞQuT sð Þdt (40)

where RK is the measurement noise that is equal to the
variance of the corrupted ECG data that are collected
from the sensor, QK is the process noise in the model
used for state estimation, u sð Þ is the state transition
matrix, and Ts is the sampling time.

The working of EKF is summarized.37 The sam-
ples of the MIT-BIH database with a sampling fre-
quency of 360 Hz are considered for the first three

FIG. 1. ANC block diagram. ANC, adaptive noise canceller.
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cases, whereas, for the fourth case, the sampling fre-
quency is 820 Hz. The variables used in investigated
algorithms in this article are listed in Table 1.

Simulation Results
The performance of EKF algorithm is tested and also
compared with SSRLS for all four cases of PLI, which
are:

� Case 1: Known constant amplitude and frequency
of PLI
� Case 2: Unknown constant amplitude and fre-

quency of PLI
� Case 3: Unknown drifting amplitude and fre-

quency of PLI
� Case 4: Real ECG signal taken from AFIC/NIHD

Pakistan

The ECG data acquired for the first three cases
from the MIT database are shown in Figure 2a

after its amplitude normalization,48 and its fre-
quency spectrum is illustrated in Figure 2b. The pa-
rameter values used for simulations are tabulated
in Table 2.

All simulations are carried at the MATLAB plat-
form. The performance metrics considered are NR,
MSE, and frequency spectrum plots. The NR is calcu-
lated as:

NR nð Þ = Ae nð Þ
Ad nð Þ (41)

where Ae nð Þ and Ad nð Þ are absolute values of estimated
error e(n) and desired d(n) signal, respectively. They
are computed by a succeeding estimator:

Ar nð Þ= kAr n� 1ð Þþ 1� kð Þ r nð Þj j (42)

Case 1: PLI of known constant amplitude
and frequency
In this case, PLI noise of known and constant
amplitude of 0.1 and a frequency of 50 Hz is
added to the ECG signal. Figure 3a and b illustrate
the simulated PLI and the corrupted ECG. The esti-
mated ECG by EKF and SSRLS are depicted in
Figure 3c.

The frequency spectrum of simulated PLI, noisy ECG,
and recovered ECG after employing SSRLS and EKF for
PLI reduction is shown in Appendix Figure A1. It is clear
from Appendix Fig. A1 that EKF and SSRLS filter
remove PLI from ECG with an approximately similar
performance.

Table 1. Variables used in state-space recursive least square
and extended Kalman filter

Variables (SSRLS) Variables (EKF) Description

�x x̂� Predicted state
x̂ x̂ Estimated state
�y h x̂�k

� �
Predicted output

� — Prediction error
A A System transition matrix
C H Output matrix
K KK Observer gain
k — Forgetting factor
— RK Measurement noise
— QK Process noise
— P Error covariance

FIG. 2. (a) Pure ECG signal (b) frequency spectrum of pure ECG signal. ECG, electrocardiogram.
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Numerous simulations are done to understand the be-
havior of governing parameters of pondered algorithms.
From the simulation results, the chosen value of SSRLS
forgetting factor (k) is 0.99. The parameters of EKF algo-
rithm are calculated by using Eqs. (39–40). It is clear from
Figure 4a that the EKF performs slightly better than
SSRLS as the SSRLS curve shows small oscillations for
case 1. Moreover, Figure 4b depicts the MSE of both
the investigated algorithms.

From Figures 3 and 4, it can be concluded that
the estimation performance of EKF and SSRLS filter

is almost the same for PLI with known constant
amplitude and frequency. The SSRLS and EKF
have estimated the ECG signal with minimal spectral
distortion. However, owing to the higher computa-
tional complexity of EKF, SSRLS can be a preferred
choice in this case. The amplitude and frequency
estimation of PLI will be carried out for case 2 and
onward.

Case 2: PLI of unknown amplitude and frequency
For case 2, PLI of unknown amplitude and frequency is
added to the ECG. The PLI generated in MATLAB is
further added to the pure ECG to obtain the degraded
ECG in Figure 5.

The amplitude and frequency estimation of PLI con-
sidered in case 2 are depicted in Figure 5c and d. From
Figure 5c, it can be verified that the amplitude estima-
tion of EKF is better than SSRLS, but the frequency es-
timation of PLI is approximately the same for both

Table 2. Simulation parameters of power line interference

Cases

Parameters (PLI)

PLI amplitude PLI frequency

Case 1 0.1 50 Hz
Case 2 0.5 50 Hz
Case 3 0.5, 0.3 49 Hz, 51 Hz

FIG. 3. (a) PLI (b) noisy ECG (c) estimated ECG by EKF and SSRLS for case 1. EKF, extended Kalman filter; PLI,
power line interference; SSRLS, state-space recursive least square.
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SSRLS and EKF algorithms. The PLI-free ECG is ac-
quired by deducting estimated PLI for case 2 from
the noisy ECG, as depicted in Figure 5e.

It can be seen from the comparison of Figures 2
and 5e that EKF has a better amplitude approxi-
mation than that of SSRLS. The amplitude of esti-
mated ECG using SSRLS is around 0.8, whereas
the EKF-estimated ECG is nearly 1. Moreover,
for case 2, the frequency spectrum of generated
PLI and its estimation using SSRLS and EKF is
depicted in Appendix Figure A2. It can be con-
cluded that both algorithms for case 2 have esti-
mated PLI to be approximately equal to the PLI
that corrupts the ECG. Hence, both algorithms
have removed the 49 Hz PLI from the degraded
ECG. The frequency spectrum of noisy and esti-
mated ECG using SSRLS and EKF algorithms for
case 2 is illustrated in Appendix Figure A3.

From the simulation results for different forgetting
factors of the SSRLS algorithm, the chosen value of
the SSRLS forgetting factor (k) for frequency and am-
plitude estimator is 0.99; covariance matrices of the
EKF algorithm are calculated by using Eqs. (39–40).
Under these conditions, both SSRLS and EKF algo-
rithms are implemented and their NR and MSE curves
comparison is shown in Figure 6.

Figure 6a depicts that EKF exhibits better perfor-
mance by reducing noise to approximately zero with
fewer oscillations as compared with SSRLS, which,
however, reduces noise to zero but with high oscilla-
tions. Figure 6b shows that EKF has less MSE than
that of SSRLS.

Case 3: PLI with drifting amplitude and frequency
In case 3, ECG is corrupted by PLI of varying
frequency and amplitude. This drifting PLI is gener-
ated in MATLAB by concatenating two sinu-
soids of different frequencies (49 and 51 Hz), and
amplitude (0.5 and 0.3) is depicted in Figure 7a.
This simulated PLI is then added to the ECG to
obtain the corrupted ECG and illustrated in
Figure 7b.

Figure 7c and d shows the amplitude and fre-
quency estimate of PLI considered for case 3 through
SSRLS and EKF. It can be concluded from Figure 7c
that the amplitude of estimated ECG using SSRLS is
around 0.82, whereas the EKF-estimated ECG is
around 0.9.

Moreover, for case 3, the frequency spectrum of gen-
erated PLI and its estimation using SSRLS and EKF is
depicted in Appendix Figure A4. The PLI free ECG is
obtained by subtracting estimated PLI from the noisy
ECG, as illustrated in Figure 7e. Appendix Figure A5
shows the frequency spectrum of noisy ECG and its
estimated signal through SSRLS and EKF algorithms,
respectively, for case 3.

After performing extensive simulations, the cho-
sen value of forgetting factor for frequency and am-
plitude estimator is 0.99 for the SSRLS algorithm.
Using this value and the calculated values of EKF pa-
rameters from Eqs. (39–40), both SSRLS and EKF are
utilized to suppress the drifting PLI from the noisy
ECG. Figure 8 depicts the obtained NR curve and
MSE for case 3. The NR curve in Figure 8a illustrates
that the EKF algorithm outperforms the SSRLS filter,

FIG. 4. Comparison of (a) NR and (b) MSE of SSRLS and EKF-based ANC systems for case 1. MSE, mean square
error; NR, noise reduction.
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FIG. 5. (a) Simulated PLI (b) noisy ECG (c) PLI amplitude estimation (d) PLI frequency estimation (e)
estimated ECG by EKF and SSRLS for case 2.

FIG. 6. Comparison of (a) NR and (b) MSE for case 2.
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as it completely removes PLI noise from the corrup-
ted ECG, unlike SSRLS. Similarly, MSE plots in
Figure 8b depict that EKF has less MSE as compared
with SSRLS.

Figures 7 and 8 conclude that both SSRLS and EKF
have removed drifting PLI from the noisy ECG. How-
ever, EKF performs better than SSRLS, as EKF has es-
timated both frequency and amplitude of the drifting
PLI more accurately and with less MSE than SSRLS.

Case 4: real ECG signal
In the fourth case, a real-time ECG recording is
obtained from a device, and this signal serves as cor-
rupted ECG input for our proposed ANC and is
depicted in Figure 9a.

Rigorous simulations are carried out to obtain the
best pair of SSRLS forgetting factors for both frequency
and amplitude estimators. From the results, the chosen
value of SSRLS for frequency and amplitude estimation

FIG. 7. (a) Simulated PLI in MATLAB (b) noisy ECG (c) amplitude and (d) frequency estimation of PLI (e)
estimated ECG by EKF and SSRLS for case 3.

44 TAHIR ET AL.

D
ow

nl
oa

de
d 

by
 1

65
.2

29
.1

25
.1

45
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

2/
13

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



is 0.99. The EKF parameters are calculated by using
Eqs. (39–40). After estimating these parameters,
SSRLS and EKF are implemented to remove the
PLI that has corrupted the real-time ECG signal.
The results of the amplitude and frequency estimator are

shown in Figure 9b and c. The PLI free ECG is acquired
by deducting approximated PLI from the noisy ECG, as
revealed in Figure 9d. From Figure 9d, it is concluded
that both SSRLS and EKF have removed approximately
the entire PLI noise that has corrupted the real-time

FIG. 8. Comparison of (a) NR and (b) MSE of SSRLS EKF for case 3.

FIG. 9. (a) Real-time noisy ECG (b) PLI amplitude estimation (c) PLI frequency estimation (d) estimated ECG
by EKF and SSRLS for case 4.
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ECG signal. Appendix Figure A6 shows the frequency
spectrum of noisy ECG and its estimate through
SSRLS and EKF algorithms, respectively, for case 4.

The MSE of both filters is also shown in Figure 10 for
case 4. It is noted from Figure 10 that the residual of
PLI by SSRLS filter is more than that of EKF. Hence,
EKF proves to be better than SSRLS for PLI elimination
from ECG signal.

Discussion
It has been observed that both proposed extended
Kalman-based ANC and SSRLS-based ANC have per-
formed well in our four simulation cases, that is, PLI
with known amplitude and frequency, PLI with unknown
amplitude and frequency, PLI with drifting amplitude and
frequency, and PLI removal from a real-time ECG record-
ing. Simulation results revealed that both investigated
methods/algorithms are capable of tracking drifting PLI
noise and can successfully remove PLI noise from the
ECG without distorting the important ECG data.

From NR curves, that is, Figures 4a, 6a, and 8a, it can
be seen that EKF-based ANC gives fewer oscillations as
compared with SSRLS-based ANC, showing that EKF
can comparatively track PLI in a better way. Similarly,
MSE curves, that is, Figures 4b, 6b, 8b, and 10 and fre-
quency spectrum, that is, Appendix Figures A1, A3, A5,
and A6, illustrate that EKF-based ANC can more accu-
rately remove fixed as well as drifting frequency of PLI
noise from ECG as compared with SSRLS-based ANC.

The better tracking and noise removal capability
achieved by EKF is due to the additional information
of measurement and process noise (Eqs. 39–40) used
by the EKF to track noise. The EKF is more demanding
in terms of additional information about measurement

and process noise, as compared with SSRLS. In applica-
tions where the provision of accurate measurement and
process noise covariances is not possible, the SSRLS al-
gorithm’s performance is comparable to that of EKF.36

Conclusion
In this article, an EKF-based ANC for PLI cancellation
from an ECG signal has been presented. The sug-
gested model for EKF-based PLI canceller incorpo-
rated the frequency of PLI as a separate parameter.
Hence, our proposed ANC possessed the capability
to track PLI with both unknown and drifting fre-
quency and amplitude. Performance comparison is
presented with the SSRLS filter-based ANC system
for simulated PLI with (1) known, (2) unknown but
constant, and (3) unknown and drifting amplitude
and frequency. Real ECG signal acquired from AFIC/
NIHD Pakistan was also used to investigate the pre-
sented ANC system’s performance. Simulation results
depicted enhanced PLI removal capability of EKF
compared with SSRLS filter but at the price of more
computational complexity. In the future, it would be
attention-grabbing for researchers to explore the
performance of the proposed EKF-based ANC system
for PLI removal from other biomedical signals, for
example, electromyography noise (EMG) and electro-
encephalogram. Moreover, efforts should be under-
taken to develop fewer complex solutions for PLI
removal from ECG signals.
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Abbreviations Used
AFIC ¼ Armed Forces Institute of Cardiology
ANC ¼ adaptive noise canceller
ANF ¼ adaptive notch filter
ASIC ¼ adaptive sinusoidal interference canceller

BW ¼ baseline wander
DCT ¼ discrete cosine transform
DFT ¼ discrete Fourier transform
ECG ¼ electrocardiogram
EEG ¼ electroencephalogram
EKF ¼ extended Kalman filter

EMG ¼ electromyography noise
FDM ¼ Fourier decomposition method

FIR ¼ finite impulse response

IIR ¼ infinite impulse response
KF ¼ Kalman filter
KS ¼ fixed lag EKF smoother

LMS ¼ least mean square
MIT-
BIH
¼ Massachusetts Institute of Technology (MIT)-Boston’s Beth

Israel Hospital (BIH) Arrhythmia Database
MSE ¼ mean square error

NIHD ¼ National Institute of Heart Diseases
NR ¼ noise reduction
PLI ¼ power line interference

RLS ¼ recursive least square
SG ¼ Savitzky–Golay

SNR ¼ signal-to-noise ratio
SSRLS ¼ state-space recursive least square

SVD ¼ singular value decomposition

Appendix

APPENDIX FIG. A1. Frequency spectrum of (a) PLI (b) noisy ECG (c) estimated signal using SSRLS and (d) EKF
for case 1. ECG, electrocardiogram; EKF, extended Kalman filter; PLI, power line interference; SSRLS, state-space
recursive least square.
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(Appendix continues /)

APPENDIX FIG. A2. Frequency spectrum of (a) PLI noise (b) estimated PLI noise using SSRLS (c) EKF for case 2.

EKF-BASED PLI CANCELLER FOR ECG SIGNAL 49

D
ow

nl
oa

de
d 

by
 1

65
.2

29
.1

25
.1

45
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

2/
13

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



APPENDIX FIG. A3. Frequency spectrum of (a) noisy ECG (b) estimated ECG via SSRLS (c) EKF for case 2.

(Appendix continues /)
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APPENDIX FIG. A4. Frequency spectrum of (a) simulated PLI (b) estimated PLI via SSRLS (c) EKF for case 3.
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APPENDIX FIG. A5. Frequency spectrum of (a) noisy ECG (b) estimated ECG using SSRLS (c) EKF for case 3.
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APPENDIX FIG. A6. Frequency spectrum of (a) noisy ECG (b) estimated ECG using SSRLS (c) EKF for case 4.
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