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ABSTRACT
Uncrewed Aerial Vehicles (UAVs) are frequently utilized in several domains such as
transportation, distribution, monitoring, and aviation. A significant security
vulnerability is the Global Positioning System (GPS) Spoofing attack, wherein the
assailant deceives the GPS receiver by transmitting counterfeit signals, thereby
gaining control of the UAV. This can result in the UAV being captured or, in certain
instances, destroyed. Numerous strategies have been presented to identify counterfeit
GPS signals. Although there have been notable advancements in machine learning
(ML) for detecting GPS spoofing attacks, there are still challenges and limitations in
the current state-of-the-art research. These include imbalanced datasets, sub-optimal
feature selection, and the accuracy of attack detection in resource-constrained
environments. The proposed framework investigates the optimal pairing of feature
selection (FS) methodologies and deep learning techniques for detecting GPS
spoofing attacks on UAVs. The primary objective of this study is to address the
challenges associated with detecting GPS spoofing attempts in UAVs. The study
focuses on tackling the issue of imbalanced datasets by implementing rigorous
oversampling techniques. To do this, a comprehensive approach is proposed that
combines advanced feature selection techniques with powerful neural network (NN)
architectures. The selected attributes from this process are then transmitted to the
succeeding tiers of a hybrid NN, which integrates convolutional neural network
(CNN) and bidirectional long short-term memory (BiLSTM) components. The
Analysis of Variance (ANOVA) + CNN-BiLSTM hybrid model demonstrates
superior performance, producing exceptional results with a precision of 98.84%,
accuracy of 99.25%, F1 score of 99.26%, and recall of 99.69%. The proposed hybrid
model for detecting GPS spoofing attacks exhibits significant improvements in terms
of prediction accuracy, true positive and false positive rates, as well as F1 score and
recall values.
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INTRODUCTION
UAV are uncrewed aerial vehicles that operate remotely without the need for human
pilots. Equipped with sensitive equipment such as cameras and sensors, these devices serve
various purposes including delivery, mapping, inspection, and surveillance. Particularly
valuable in emergency, combat, and disaster situations, they can undertake tasks
considered hazardous or challenging for humans. Despite their autonomy, UAV require
support for operation, presenting cybersecurity challenges such as confidentiality,
integrity, and availability (CIA) issues. Similar to traditional aircraft, UAV are classified
based on various factors such as flying modes, engine types, ranges, roles, design, and
weight (Baig, Syed &Mohammad, 2022). Ground control units allow operators to remotely
control UAV, offering services like weather tracking, aerial photography, cargo
transportation, and surveillance. Notable examples include the S-100 Camcopter, designed
for delivering defense payloads to remote and inaccessible locations. The commercial
drone market is poised for significant growth, with forecasts projecting a market share of
USD 58.4 billion by 2026.

GPS spoofing, command injection, denial of service (DOS), jamming, and other
techniques can all leave modern UAV vulnerable to attacks. Particularly concerning are
GPS spoofing attacks because of their ease of use and low cost. Early identification is key to
stopping these kinds of attacks. Different tactics and methods are used to thwart GPS and
DOS attacks. A GPS assault aims to fool a UAV’s detection capabilities by manipulating its
signals, causing confusion between bogus and real signals. These techniques can identify
GPS signals; however, they are not sufficient to identify DOS attacks.

In Fig. 1, for instance, a UAV is vulnerable to many threats from the CIA triad. A
complete strategy that includes secure communication protocols, robust encryption, strict
access restrictions, firmware and software security measures, and physical safeguards is
required to protect UAV against such assaults.

Big tech companies like Facebook and Tesla use UAV to provide internet connectivity
to rural areas lacking access. UAV excel in tasks classified as tedious, dirty, and dangerous;
indicating situations beyond human capabilities to operate and intervene. UAV will
rapidly dispatch disaster alerts and assist in expediting rescue or recovery operations when
a public communication network is overwhelmed. They can transport medical supplies to
locations that are difficult to get to. UAV can effectively cover vast areas while maintaining
human safety, particularly in scenarios involving the detection of hazardous gas leaks,
wildfires, or wildlife monitoring.

The most widespread and important use of UAV is for military purposes. Superior UAS
have a noticeable advantage over their competitors due to their reduced size, enhanced
stealth, and ability to operate in difficult environments and monitor borders. UAV can
effectively combat terrorism in various situations without causing any casualties. To
monitor in real-time, the UAV needs to gather a lot of precise information during its flight.
These data comprise commands from the base station to control the UAV and guarantee
mission performance, as well as a payload subsystem and telemetric subsystem (Khan
et al., 2022).
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Communication lines, sensors, and software should be the primary focus of studying
UAV vulnerabilities. Unlike the sophisticated communication technologies used in
military UAV, consumer-grade UAV often rely on direct communication techniques such
as the Wireless Fidelity (Wi-Fi) b/g/n standard and the C-band electromagnetic spectrum
(Qiao, Zhang & Du, 2017). Mobile GCS typically operate these small UAV. For Da-Jiang
Innovations (DJI) UAV and many others, the ground control station (GCS) usually
consists of remote controllers and smartphones. Communication channels are susceptible
to disconnection, jamming, eavesdropping, and man-in-the-middle attacks. Sensor
vulnerabilities include the risk of GPS spoofing compromising the devices (Meng et al.,
2020) and the potential for sound disturbances to interfere with gyroscopic sensors. While
ensuring swift recovery and resumption of normal operations following an attack is
essential, identifying potential attacks is even more critical. While GPS spoofing may be
challenging to detect, jamming and disconnection attacks are easily recognizable.

GPS spoofing attacks become more sophisticated with advancements in location-based
services, posing a threat to the reliability of transportation, timing, and navigation
applications. Current IDS face challenges due to imbalanced datasets, resulting in
decreased GPS spoofing detection performance. Furthermore, distinguishing between
legitimate and fake GPS signals using traditional methods proves inadequate, exacerbated
by reliance on expensive specialized equipment or central infrastructure. Consequently,
machine learning models trained with imbalanced datasets may misclassify fake GPS
signals as genuine, resulting in higher false negative rates and poor deep learning model
performance.

This study aims to address these challenges by improving the detection accuracy of GPS
spoofing attacks, minimizing false positive rates through the identification of optimal
feature selection methods, and addressing imbalanced datasets. The proposed method
focuses on detecting attacks on UAV efficiently, using minimal resources, and maximizing
readability. Research objectives include developing an effective and adaptable method for
detecting attacks, ensuring timely detection, and enhancing readability using easily
available sensor data. Research questions helped the study find ways to improve the
current state of the art, fix the problem of unbalanced datasets for best model training, find
the best engineering features for model training, and figure out the most important
performance analysis parameters for checking how well the proposed model works. This

Figure 1 Types of attacks on UAV in CIA triad. Full-size DOI: 10.7717/peerj-cs.2714/fig-1
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study contributes to the field by enhancing GPS spoofing detection accuracy for UAVs
through an adaptable method that improves detection reliability. It minimizes false
positives by leveraging optimal feature selection techniques and addresses the issue of
imbalanced datasets for more robust model training. The proposed method efficiently
utilizes readily available sensor data, ensuring timely detection with minimal resource
consumption. Moreover, it provides a comprehensive performance analysis, identifying
critical metrics to assess the model’s effectiveness, scalability, and adaptability in diverse
UAV operational scenarios.

The rest of the article is organized as follows: the “Literature Review” section is a
literature review that comprehensively analyzes the existing state of the art regarding GPS
spoofing attacks on UAV, highlighting the limitations of current methods. The “Proposed
Model” section is the proposed method that addresses imbalanced datasets and feature
selection for detecting GPS spoofing attacks on UAV. In the “Results and Discussion,”
details the steps taken to develop and implement the proposed method, including data
collection, model training, and evaluation. The “Comparative Analysis” section presents
the findings of the study, including the performance of the proposed model in detecting
GPS spoofing attacks as well as a comparison with existing methods. Finally, the
“Conclusion and Future Work” section summarizes the study’s key findings, discusses the
implications of the results, and suggests directions for future research.

LITERATURE REVIEW
Recent research on UAV security has generated significant attention due to the rise in
popularity of drones and associated security issues. Considerable resources have been
dedicated to creating algorithms for detecting GPS spoofing. Media stories are focusing
more on cyber-attacks against UAV, which are now seen as a drawback to their beneficial
utilization. The International Telecommunication Union (ITU) is contemplating
integrating UAV into its Fifth Generation (5G) wireless communication framework.
Furthermore, following the earthquake and tsunami that struck Fukushima, Japan in 2011,
A Honeywell T-Hawk drone was used to examine a nuclear plant that was too radioactive
for humans to enter (Xue et al., 2020). In 2012, someone interfered with the GPS signal of a
rotor-assisted UAV called Camcopter S-100, causing it to crash fatally into a ground
control operations center. This unforeseen disturbance led to the sudden and unnecessary
death of an engineer, as well as injuries to both remote pilots (Pocock, 2012).

GPS spoofing attack detection using non-ML methods
GPS spoofing is a security risk that can trick the receiver into computing inaccurate
position data. Various techniques, such as non-ML as shown in Table 1 or conventional
methods, are used to detect GPS spoofing in UAV. Non-ML methods include signal
strength analysis, timing analysis, signal quality analysis, consistency checks, and
cryptography techniques.

Rothmaier et al. (2021) introduce a generic framework that uses the Generalized
Likelihood Ratio Test (GLRT) to merge many measurements for Global Navigation
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Satellite System (GNSS) spoofing detection. The framework was created to be resilient
against various attack modes while also keeping a low rate of false alerts, according to the
Neyman-Pearson paradigm. The study provides an overview of the GLRT framework
previously published and evaluates its performance against traditional logical gate-based
approaches for combining measurements, received signal power (RSP), and signal
distortion metrics. The results indicate a 60% decrease in the maximum probability of
miss-detection (PMD) scenario. The authors modify measurement models for a receiver
model using flight data and confirm adherence to the false alarm (FA) guarantee for power,
signal distortion metric, and pseudo-range residuals. The authors proved the framework’s
usefulness by utilizing it in spoofing scenarios from the TEXBAT dataset with the same
receiver type and combining three measures to achieve strong detection performance.

Table 1 Exploring non-ML approaches for detecting GPS spoofing attacks.

Reference Technique Dataset Evaluation parameters Results Limitations

GNSS, Spoofing Detection/
GPS Attack (Rothmaier
et al., 2021)

GLRT TEXBAT RSP, auto-correlation
function, distortion &
pseudo-range residuals

Experiment FA-30s, 0.4 dB
power advantage

. Unexpected phenomena
affecting metric behavior:
Aircraft rotation during takeoff
and receiver clock resets.

. Impact of over-bounding
error models: These models
captured the effects but
reduced detection
performance.

Small UAVs, GPS Attack
(Basan et al., 2022)

KLD Simulated
dataset

UAV flight altitude,
Number of satellites,
GPS speed, Flight angle,
Latitude Longitude

Experiment (Soft mode
simulation) Type II Error
= 0.01 Attack Detection
Probability 0.99

. KL divergence properties: is
non-negative, asymmetric, and
does not satisfy the triangular
inequality.

GNSS Spoofing Detection
GPS Attack (Magiera,
2019)

Multi-antenna
Scheme

Simulated
dataset

Received signals,
autocorrelation
function, distortion,
and pseudo-range
residuals

Experiment C/N0-45 dB
Hz, Pd-99.9%

. Hardware trade-off: A trade-
off exists between hardware
complexity and effectiveness.

. Antenna efficiency: More
antennas can improve spoofing
detection in low carrier-to-
noise ratio conditions.

Civilian UAVs GPS Attack
Detection Using Visual
Odometry (Varshosaz
et al., 2019)

SEDCP Simulated
dataset

Windows size, detection
rate

SEDCP (w = 21), 32 (100%),
(HOD_AD) (w = 21), 27
(84%), (HOD_TD), (w =
21), 29 (91%)

. Effectiveness limitations:
Velocity changes compromise
VO in detecting spoofed UAV
trajectories.

. Performance impact: Velocity
changes reduce image overlap,
hindering performance.

Analyzing Camera’s Video
Stream to detect GPS
Attack (Davidovich,
Nassi & Elovici, 2022)

VISAS Simulated
dataset

Windows size, altitude,
maximum error
distance

Altitude-50 m, window size
(4), maximum error
distance-5 m, lowest error
rate-4 m

. Detection limitations: Night
and low-texture areas (e.g.,
water or snow).
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Basan et al. (2022) introduced a GPS spoofing detection technique for UAV that uses
mathematical tools to address the issue without the need for extensive training data. In
detecting GPS spoofing attacks in a group of UAV, a proposed method achieves 96%
accuracy in detecting attacks, with a 3.5% rate of false positives. The text discusses key
aspects of data analysis and normalization procedures for data analysis, as well as the use of
the Kullback Leibler Divergence (KLD) measure to identify abnormalities in UAV systems.
The article offers a method for detecting and minimizing the effects of intermediate GNSS
spoofing, which involves transmitting bogus signals with tiny temporal differences from
genuine signals received from satellites. The suggested anti-spoofing system combines
techniques for antenna array processing with a multi-path identification algorithm to tell
the difference between real and fake GNSS signals that are very similar to each other. The
spoofing detection mechanism compares the steering vectors of received spatial
components. The mitigation strategy uses adaptive beamforming to eliminate interference
from shared directions and maintain original signals from GNSS satellites. Simulations
confirm the efficacy of this approach in protecting GNSS receivers against intermediate
spoofing interference, showcasing its usefulness. The authors in Varshosaz et al. (2019)’s
proposed method compares the UAV’s relative sub-trajectory from visual odometry (VO)
with its absolute replica from GPS, utilizing dissimilarity measures sum of Euclidean
distances between corresponding points (SEDCP), angle distance, and taxicab distance.
This allows for precise identification of UAV spoofing events, limiting the occurrence of
VO drift errors. The approach demonstrates wide applicability, real-time execution, and
efficiency in identifying different UAV spoofing cases. The results show that the method is
effective in identifying instances of UAV spoofing, especially during long-range UAV
flights with large changes in flight direction greater than 3 degrees and gradual UAV
spoofing scenarios with a redirection rate of 1 degree. SEDCP is highly effective at
identifying spoofing without redirection, providing excellent detection of false GPS
locations. This solution dramatically enhances UAV security by accurately detecting
spoofing and mitigating VO drift errors.

Mykytyn et al. (2023) aims to develop a system that can identify both single-transmitter
and multi-transmitter GPS spoofing attempts to reduce their negative impacts. The
detection mechanism identifies and confirms GPS spoofing attacks by comparing the
distances between swarm members using GPS coordinates and Impulse Radio Ultra-
Wideband ranging and determining if the discrepancy exceeds a predefined threshold. In
Davidovich, Nassi & Elovici (2022) the authors suggest extracting frames from the video
stream along with their respective GPS coordinates. The approach can effectively detect
possible GPS spoofing attacks on a drone by evaluating the correlation between each
frame. Operating a drone at an altitude of 50–100 m over an urban area, moving at an
average speed of 4 km/h, and in low-light conditions, this approach demonstrates a high
level of security. The system can identify GPS spoofing attacks, recognizing when the
falsified location deviates by −4 m, with an average variance of 2.5 m from the actual
location.
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GPS spoofing attack detection using ML methods
MLmethods are superior for identifying GPS-spoofing assaults on UAV. GPS systems play
a crucial role in navigation, transportation, and essential infrastructure, which makes them
susceptible to malevolent individuals. These malicious individuals aim to mislead
recipients by sending counterfeit signals, which might result in malicious individuals
circumventing conventional anti-spoofing techniques due to their limitations. Analyzing
complex patterns in the data using ML techniques can accurately identify genuine and fake
GPS signals. The models may learn from large datasets to identify tiny anomalies and
variations indicating a spoofing attack. Tables 2–4 summarize the literature discussed in
this section.

Using the 2009 High School Longitudinal Study dataset, Wongvorachan, He & Bulut
(2023) explored several sampling approaches to address class imbalance in diverse
circumstances. This study compares random oversampling (ROS), random undersampling
(RUS), and a hybrid re-sampling method that combines Synthetic Minority Oversampling
Technique for Nominal and Continuous (SMOTE-NC) with RUS. To evaluate each
method, classification uses a random forest (RF). For moderately imbalanced data, ROS
works, but hybrid re-sampling works better for very skewed data. The authors also
proposed future research and discussed how these findings may affect educational data
mining. The authors in Talaei Khoei et al. (2023) compared artificial neural networks
(ANN), classification, regression decision tree (CART), logistic regression (LR),
GaussianNB (GNB), RF, and support vector machine (SVM). Measurements included
hyperparameters, dataset size, correlated features, imbalanced datasets, and regularization
for thirteen distinct aspects of actual and manufactured GPS assault signals were
investigated. Four criteria graded the models: PMD, accuracy, probability of false alert
(PFA), and probability of detection (PD).

Albulayhi et al. (2022) developed a novel method for selecting and extracting features
from anomaly-based intrusion detection system (IDS) for Internet of Things (IoT). This
method extracted significant features in different proportions using information gain (IG)
and gain ratio (GR) entropy-based methods. Mathematical set theory extracts the most
valuable properties, especially using union and intersection procedures. Researchers used
the IoT Intrusion Dataset 2020 (IoTID20) and Network-based Survivable Learning-
Knowledge Discovery (NSL-KDD) datasets to train and evaluate the model framework to
determine its efficacy. The authors used bagging, multilayer perceptron (MLP), J48, and
instance-based learning with k nearest neighbors (IBk) in this experiment. Using the
intersection operation, 11 of the 86 IoTID20 features and 15 of the 41 NSL-KDD features
were the union operation resulting in 28 IoTID20 and 25 acNSL-KDD characteristics. This
method excelled with 99.98% classification accuracy. Alomari et al. (2023) proposed a
novel malware detection approach using deep learning and feature selection. Researchers
used two datasets—one with malware and one with innocent activities—to create a
training system. The authors created multi-feature-selected datasets using pre-processing
and correlation-based feature selection. The authors trained dense and long-short-term
memory networks (LSTM) based deep learning models on these feature-selected datasets.
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Table 2 Exploring ML approaches for detecting GPS spoofing attacks.

Reference Technique Dataset Evaluation
parameters

Results Limitations

Comparison of
ROS, RUS using
SMOTE,
(Wongvorachan,
He & Bulut, 2023)

SMOTE,
SMOTE-
NC

High School Study HSLS:
09 dataset

Accuracy
(ACC),
Precision,
Recall, ROC-
AUC, F1-score

SMOTE-NC + RUS ACC-
0.905%, Rec-0.898%, F1-
0.904%, Pre-0.911%, ROC-
AUC-0.967%

. Study constraints: Limited to
a single dataset and challenges
in determining optimal hyper-
parameters.

Impact of Dataset
and Parameters
on ML Model,
(Talaei Khoei
et al., 2023)

SVM, ANN,
RF, GNB,
CART, LR

Generated dataset (Aissou
et al., 2021)

ACC,
Probability of
FA,
Probability of
detection,
PMD

GNB ACC-91.2%, PD-86.16%,
PFA-2.23%, PMD-13.84%, RF
ACC-99.43%, PD-99.6%,
PFA-1.01%, PMD-1.8%
CART ACC-99.9%, PD-
99.98%, PFA-1.005%, PMD-
0.02% LR ACC-91.2%, PD-
86.19%, PFA-3.0%, PMD-
13.84% ANN ACC-93%, PD-
93.4%, PFA-3.37%, PMD-
6.6%

. Generalization: needs to be
assessed on independent test
sets.

. Imbalanced datasets: may
affect performance.

. Limited diversity: in the
dataset can constrain
effectiveness.

. Additional metrics: beyond
accuracy should be evaluated.

FS Method for IoT
IDS using ML,
(Albulayhi et al.,
2022)

IG, GR, UMF,
IMF

IoTID20 and NSL-KDD
datasets

ACC, Precision,
Recall, F1-
Measure

UMF ACC-99.98%, PR-99.90%,
Rec-99.90%, F1-99.90% IMF
ACC-99.98%, PR-99.90%,
Rec-99.90%, F1-99.90%

. Computational expense:
Random Forest for feature
selection is computationally
intensive and struggles with
high-dimensional datasets,
leading to model overfitting.

Effective Class
Imbalance
Learning using
SMOTE & CNN,
(Joloudari et al.,
2023)

acpDNN,
acpCNN,
SMOTE

KEEL dataset (Derrac
et al., 2015), breast
cancer, Z-Alizadeh Sani
dataset

ACC,
Performance,
Specificity,
Precision,
Recall,
F1-Measure

SMOTE-NORM-CNN ACC-
98.57%, Rec-98.58%, F1-
98.57%, Pre-98.58%, Spe-
98.42%, AUC-99.14%

. Training time and
computational costs:
Relative to traditional ML
techniques.

Hybrid Noise
Handling
Technique (Data
Balancing & FS),
(Puri & Kumar
Gupta, 2022)

SMOTE,
SMOTE–
ENN, K-
Means-
SMOTE

Glass1, Glass0, Ecoli1,
Glass0123vs456, Ecoli2,
Glass6, Ecoli3, Yeast-
2vs4, Glass016vs2,
Yeast1vs7,
Yeast1458vs7 datasets

ACC, PMD,
Probability of
FA

KMeans SMOTE Hybrid-1.2%,
Bagging-2%, Boosting-2.7%, K
Means SMOTE ENN Hybrid-
1.2%, Bagging-1.9%, Boosting-
2.8%, Without resampling
Hybrid-1%, Bagging-2.6%,
Boosting-2.3%, SMOTE
Hybrid-1.5%, Bagging-1.9%,
Boosting-2.5%, SMOTE ENN
Hybrid-1.2%, Bagging-1.8%,
Boosting-2.8%

. Model comparison: A
comparison of hybrid
SMOTE, K-Mean-SMOTE,
and SMOTE-ENN using 11
datasets reveals that the
proposed K-Mean-SMOTE-
ENN hybrid model is
effective only when noise is
limited to 20%.

ML based IDS
(Hybrid FS), (Yin
et al., 2023)

IG, RF UNSW-NB15 dataset ACC, Precision,
Recall, F1-
score

IG &RF Uni ACC-80.60%, F1-
80.36%, Per-83.30%, Rec-
80.60% IG &RF Inter ACC-
82.90%, F1-81.67%, Per-
81.84%, Rec-82.90% IGRF-
RFE ACC-84.24%, F1-82.85%,
Per-83.60%, Rec-84.24%

. Performance metrics: This
study demonstrates low
accuracy, precision, recall,
and F1 score; the proposed
hybrid FS approach exhibits
worst-case computational
complexity.
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Table 2 (continued)

Reference Technique Dataset Evaluation
parameters

Results Limitations

Small UAV, CBA,
GPS Attack, (Wu
et al., 2023)

BiLSTM,
SHAP, NN

Simulations dataset Detection time,
ACC

CBA parameters: 1,956,
Detection time: 367 us, GPS
Spoof attack: 99.1%

. Feature selection: is not
optimal for GPS spoofing
attack detection.

. Under-sampling: is
employed, adversely affecting
model training.

. Increased complexity: The
use of multiple ML methods
adds to the complexity of the
model.

Single Frequency
Receiver (GPS
Attack) (Shafiee,
Mosavi &
Moazedi, 2018)

KNN, NN Simulated dataset Detection time,
complexity

NN structure (proposed)
Detection time 2.895 s,
Complexity-26, Naive
Bayesian DT-0.153,
Complexity-N/A

. Higher complexity: can be
improved by employing more
efficient machine learning
methods.

GPS spoofing
attack detection
using Perception
Data/GPS Attack
(Wei, Wang &
Sun, 2022)

Perception
Data
Framework
Based on
XGBoost
model, RF
model

Real Flights dataset ACC, Precision,
Recall

PERDET (RF model) ACC-
99.69, Precision-99.07, Rec-
99.38, F1-Measure-99.22

. Biased dataset: is utilized for
training, with a 4:1 ratio
between normal and attacked
data.

Table 3 Exploring ML approaches for detecting GPS spoofing attacks-Continued.

Reference Technique Dataset Evaluation
parameters

Results Limitations

GPS spoofing attack
detection in UAS (GPS
Attack) (Aissou et al.,
2022)

SVM, KNN Simulated
dataset

ACC, PD,
Processing
Time, Memory
Size, and
Detection
Time per
sample

Nu-SVM Processing time (s)-0.12,
Memory size (MiB)-0.508, TPR-
91.26%, FNR-8.73%, FPR-
6.02%, ACC-92.78%

. Miss-detection rate: of the
proposed model is higher and
overall average results that can
be improved using more
efficient methods.

GPS in Vehicles (GPS
Attack) (Jiang, Wu &
Xin, 2022)

Recurrent
Neural
Network
(RNN)

Real-time Data,
BDD-100K
(Yu et al.,
2020)

Detection Rate,
ACC

ACC-80%, FA-7.9%, DR-90.3% . RNN limitations: to detect GPS
spoofing attacks due to a lack of
contextual information and
their inability to capture long-
term dependencies in GPS data
sequences.

(Continued)
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Table 3 (continued)

Reference Technique Dataset Evaluation
parameters

Results Limitations

Datasets Effectiveness
compare/GPS Attack
(Jullian et al., 2022)

Deep Neural
Networks
(DNN)

MAVLINK,
TEXBAT
datasets

ACC, Precision,
Recall, F1-
Score

MLP (MAVLINK), F1 (92.29%),
ACC (99.93%), MLP
(MAVLINK), F1 (97.41%), ACC
(94.43%), MLP (TEXBAT), F1-
score (82.79%), ACC (83.23%)

. Resource management
challenges: Handling UAVs’
computational, memory, and
storage requirements becomes
challenging as the model’s
complexity, including the
number of units, hidden layers,
and features, continues to
increase.

UAS/GPS Attack
(Manesh et al., 2019)

NN Software
Defined Radio
(SDR) based
dataset

Pseudo-range,
Doppler shift,
SNR

ACC-98.3%, DR-99.2%, FA-2.6% . Feature reliance: The proposed
model heavily relies on pseudo-
range, Doppler shift, and SNR
for classification, potentially
overlooking important
characteristics such as signal
structure, timing information,
and trajectory data of GPS
spoofing signals.

UAVs/GPS Attack
(Wang et al., 2020)

NN LSTM MATLAB
Simulations
dataset

Detection Rate
Detection
Time

DT-3 s, DR-78% . Model performance: Based on
the results, the proposed model
demonstrates poor performance
with a low detection rate for
GPS spoofing attack detection.

IDS (light-weight)/GPS
Attack, low energy
(Arthur, 2019)

Multi-class
SVM,
Deep-Q
Network

Simulations
dataset

ACC Multi-class-SVM, ACC-78%, SLT
+ Multi-class SVM, ACC-94%

. Dataset size: is very low,
increasing the risk of overfitting.

. Inefficient feature selection:
used in this model.

Hierarchical Detection
and Response System
Cyber Attacks in
UAVs (Sedjelmaci,
Senouci & Ansari,
2018)

SVM Simulations
dataset

Detection Rate
Efficiency

DR-93%, FPR-3% . Feature relevance: SSI, NPS,
JITTER, and NPD have limited
relevance and discriminatory
power.

. Need for additional features:
like carrier-to-noise ratio and
timing anomalies should be
explored to improve detection
accuracy.

Small UAVs, Deep
Learning Based/GPS
Attack (Sun et al.,
2023)

PCA, CNN,
LSTM

GPS signal
dataset

ACC, Precision,
Recall Error,
F1 Score

PCA-CNN-LSTM, ACC-0.9943%,
Perc-0.9798%, Rec-0.965%, F1-
0.9722%

. Model complexity and
computational performance:
of the GPS signal spoofing
detection model can be
improved.

. Feature selection: is not
prioritized in this study for
optimization.
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The authors measure model performance using precision, recall, accuracy, and the F1-
score. An intriguing finding was that certain feature-selected situations performed
similarly to the baseline dataset. Performance decreases vary by dataset. Performance
degradation in the first dataset ranges from 0.07% to 5.84%, with feature reduction ratios
between 18.18% and 42.42%. The second dataset shows an 81.77–93.5% decrease rate and
3.79–9.44% performance degradation.

Table 4 Exploring ML approaches for detecting GPS spoofing attacks-continued.

Reference Technique Dataset Evaluation
parameters

Results Limitations

IDS for IoD (Escorcia-
Gutierrez et al., 2023)

DBN, SSO,
STFA-
HDLID
(Hybrid
Model)

Simulated
dataset

ACC,
Sensitivity

STFA-HDLID ACC-98.85%,
Sensitivity-99.36%, LSTM-RNN,
ACC-98.02%, Sensitivity-97.44%,
SVM ACC-97.46%, Sensitivity-
97.21%

. DBN challenges: DBN faces
challenges in training complexity
and computational requirements.

. SSO algorithm limitations: in
convergence speed and
robustness in noisy or dynamic
UAV environments.

Satellite imagery matching
approach/GPS Attack
(Xue et al., 2020)

DeepSIM,
DNN,
ResNet

SatUAV
dataset

ACC,
Precision,
Recall
Error, F1
Score

On-ground ACC-0.948%, PER-
0.930%, Rec-0.979%, Error-
0.052%, F1-0.954 % On-board
ACC-0.890%, PER-0.871%, Re-
0.936%, Error-0.110%, F1-0.903 %

. Inefficient feature selection:
used i.

. Detection complexity: Detecting
attacks at night, in wind, and bad
weather is complex and
suboptimal.

Hybrid IDS for feature
selection/GPS Attack
(Liu & Shi, 2022)

RF, GA-RF UNSW-
NB15,
NSL-KDD
(Derrac
et al., 2021)
datasets

ACC, False
Positive
Rate

RF based IDS ACC- 94.7%, FPR-
2%, Dataset-KDD’99, GA-RF
(Proposed) ACC-96.12%, FPR-
2.91%, Dataset-NSL-KDD,GA-RF
(Proposed), ACC- 92.06%, FPR-
1.60%, Dataset-UNSW-NB15,

. Random forest limitations:
Random Forest for feature
selection is computationally
expensive and struggles with
high-dimensional datasets.

CONSTDET: Control
Semantics-Based
Detection/GPS Attack
(Wei et al., 2022)

CONSTDET Realtime
dataset

ACC,
Precision,
Recall,
Missing,
Mistake, F1
Score

CONSTDET ACC-97.70%, Perc-
98.70%, Rec-96.76%, F1-97.72%,
Missing-3.24%, Mistake-1.32%

. PID controllers importance:
PID controllers are crucial for
UAV, ensuring stable flight.

Comparative Analysis of
the Ensemble Models for
Detecting/GPS Attack
(Gasimova, Khoei &
Kaabouch, 2022)

Bagging,
Stacking,
Boosting

Simulated
datasets

ACC, PMD,
Probability
of FA

Stacking ACC-95.43%, Pd-99.56%,
PMD-0.36%, PFA-0.03 Bagging
ACC-95.28%, Pd-99.24%, PMD-
0.64%, PFA-1.07% Boosting
ACC-94.61%, Pd-96.55%, PMD-
2.95%, PFA-5.08%

. Ensemble learning limitations:
Ensemble-based machine
learning techniques increase
computational complexity and
make interpreting the decision-
making process difficult.

UAV IDS Testing/GPS
Attack (Basan, 2022)

Chi-square
distribution,
Pearson
Correlation
Coefficient
(PCC)

Simulations
dataset,
Real-time
dataset

Probability,
Standard
deviation

GPS Uncertainty 13:10 and 13:20 . Anomalous data generation:
The generated anomalous data is
close to real data, but no ML
model is proposed for data
generation.
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The authors in Puri & Kumar Gupta (2022) propose a novel re-sampling method for
imbalanced datasets. The noise-reduction method uses K-means Synthetic Minority
Oversampling Technique (SMOTE) oversampling to resolve this issue and the datasets are
initially clustered using K-means. SMOTE constructs synthetic minority class instances in
clusters to resolve the class imbalance. Finally, it eliminates noise with edited nearest
neighbor (ENN), noise is eliminated. Performance tests were done on 11 binary,
unbalanced datasets using area under receiver operating curve (AUC). The results showed
that the proposed method outperformed others in terms of varying attributive noise. The
proposed method also performed well on binary imbalanced datasets with substantial
attribute noise. The authors in Yin et al. (2023) combined RF with IG filters which
improves feature selection. This strategy uses RF to manage the influence of less significant
features chosen by IG based on their high-frequency values. Thus, the feature subset search
space has more relevant features. Recursive feature elimination (RFE), a ML-based
wrapper method, reduces feature dimensions by assessing the importance of related
features in the second phase. Experimental results on the University of New SouthWales—
Network-Based 2015 (UNSW-NB15) dataset confirm the suggested method’s anomaly
detection accuracy improvement. As shown, MLP multi-classification accuracy improves
from 82.25% to 84.24%, while the number of features decreases from 42 to 23. The authors
in Joloudari et al. (2023) examine how DNN and CNN work with other methods to handle
imbalanced data. Oversampling, undersampling, and CNN-based SMOTE integration are
involved. These methods are tested utilizing the KEEL, breast cancer, and Z-Alizadeh Sani
datasets. Repeat the trials 100 times with random data distributions to ensure reliability.
The SMOTE-Normalization-CNN model outperformed other methods with 99.08%
accuracy on 24 unbalanced datasets. Thus, this flexible hybrid model effectively addresses
imbalanced binary classification difficulties in real-world datasets.

The authors in Wu et al. (2023) propose an interpretability-focused detection
methodology CNN-BiLSTM-Attention (CBA) using Shapley Additive Explanations
(SHAP). This novel system uses GPS, IMU, and gyroscope data to target UAV. This model
aims to address the constraints of standard attack detection systems, which use NNmodels
that complicate detection results and reduce trustworthiness. The framework uses local
and global explanations to maintain interpretability. Local explanations reveal the
individual causes of detection outcomes by examining each input and model choice. The
framework also provides global explanations of the model’s key aspects and how they
relate to attack types. SHAP and generally available sensor status data form a framework
that provides deeper insight into the relationship between feature values and a variety of
attack scenarios, improving UAV attack detection reliability and comprehensibility. The
authors in Shafiee, Mosavi & Moazedi (2018) developed a novel assault detection method
by studying GPS signal characteristics. They used a multi-layer neural network, an
enhanced K-nearest neighbor (KNN) algorithm, and a Bayesian classifier to identify
several targets. To extract GPS signal features, the detection method used early-late phase,
delta, and signal level to extract GPS signal features. A novel multi-layer neural network
algorithm that uses feature selection as inputs to improve GPS spoofing detection. The
neural network showed good identification accuracy in short simulations on a software
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GPS receiver. The authors in Wei, Wang & Sun (2022) propose detecting UAV GPS
spoofing using a machine-learning technique and perceptual data. For features, they chose
a barometer, GPS, magnetometer, gyroscope, and accelerometer. Despite their many
disadvantages, these sensors’ diversity allows them to offset perceptual data and collect
experimental data during actual flights, making their proposed PerDet solution more
feasible. The study in Aissou et al. (2022) examined five instance-based learning models for
detecting GPS spoofing in uncrewed aerial system (UAS). Radius neighbor, KNN, C-SVM,
linear SVM, and nu-SVM were these models. The study used software-defined radio
modules to capture and initialize satellite signal data, as well as simulated simplistic,
intermediate, and complex GPS spoofing assaults. After evaluation, Nu-SVM
outperformed other instance learning classifiers in accuracy, detection, FA, and miss-
detection. The nu-SVM model showed good memory and processing efficiency during
detection.

Jiang, Wu & Xin (2022) established deep learning-based approach for pose estimation
(DeepPOSE), a deep learning model. Researchers developed a novel deep-learning model
to identify fake GPS signals in mobile systems and noisy sensor data. The authors used
convolutional and recurrent neural networks to decrease noise and deliver exact vehicle
trajectories based on sensor data. They also developed a novel way to precisely display
sensor data on Google Maps, decreasing trajectory determination errors. By reconstructing
sensor trajectory data, the suggested method may detect GPS spoofing attacks. Since it
detects such attacks more accurately than other methods, this strategy is better. Jullian
et al. (2022) used a new GPS spoofing defense using a multi-layer perceptron neural
network. GPS signals and flight parameters are inputs, and GPS spoofing attacks trigger an
alarm. Note that dataset analysis affects this system’s accuracy. TEXBAT data shows
83.23% accuracy, implying that GPS spoofing assaults occur 83.23% of the time. The
system’s MAVLINK dataset GPS spoofing detection accuracy is 99.93%, better than its
competitor. The system detects attacks 99.93% of the time. The accuracy scores above only
apply to the proposed solution’s evaluation using the TEXBAT and MAVLINK datasets.
Manesh et al. (2019) proposed a new GPS spoofing detection method that employs
artificial neural networks and supervised ML. Classifying GPS signals using pseudo-range,
signal-to-noise ratio (SNR), and Doppler shift is easier. The authors compare two-hidden-
layer neural networks with different numbers of hidden neurons. The results show that
their machine-learning method detects spoofing signals with few FA. Wang et al. (2020)
developed a novel GPS spoofing detection approach using the LSTM algorithm. UAV
follow a predetermined flight route and help identify GPS spoofing attempts, improving
detection rates. We’re proud to be the first to use ML to detect attacks. Extensive testing
has confirmed that our GPS spoofing detection method delivers fast and accurate results.
Simulated trials accompany our technique to combat GPS spoofing attacks. The
experiments showed that our technique detected UAV GPS spoofing attacks quickly and
accurately. No equipment upgrades are necessary. This study thoroughly describes our
method.

Arthur (2019) explores that the ground or airborne vehicles within transmission range
have the ability to spoof and hack drones. These safeguards are insufficient. Attackers can
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take control of the drone’s flight or autopilot. Due to intermittent network connectivity,
drone communication is complicated. To solve these issues and safely return the drone,
there is a need for an adaptive IDS that leverages deep learning. Arthur (2019) suggested an
IDS that can detect threats in unknown environments using a multiclass SVM and self-
taught learning (STL). The Deep-Q Network’s dynamic route learning allows the IDS to
self-heal and guide the drone home. These technologies give the IDS a high true positive
rate. Simulation findings show that the proposed IDS can defend drones against cyber
security assaults due to its accuracy, sensitivity, and specificity. Cyber attacks are typical,
suspicious, malicious, or aberrant based on their type. The worst cyber attacks on UAV
networks include gray hole and black hole attacks, jamming, GPS spoofing, and misleading
information dissemination. Sedjelmaci, Senouci & Ansari (2018) conducted numerous
simulations and demonstrated that their proposed approach can detect these attacks from
multiple UAV and attackers with low communication costs. They trained the model with
Signal Strength Intensity (SSI), Number of Packets Sent (NPS), Jitters, and Number of
Packets Dropped (NPD). High detection and low false-positive rates characterize this
model (Sedjelmaci, Senouci & Ansari, 2018).

Sun et al. (2023) uses deep learning to detect GPS signal spoofing in small UAV. The
authors talk about the UAV hardware system, the experiment jammer, the collection
settings such as time and weather, Spearman correlation coefficients for preprocessing, and
SVM-SMOTE’s data imbalance solution for getting the GPS signal dataset and
preprocessing it. The new principal component analysis (PCA)-CNN-LSTM approach
extracts features, CNN captures local features, and LSTM processes and models. Tenfold
cross-validation ensures the robustness of the simulation experiment and compares the
model to ML and deep learning methods. The PCA-CNN-LSTM neural network model
achieves a very high accuracy value which is 0.9949%. This study lays the groundwork for
micro UAV GPS signal spoofing detection. Escorcia-Gutierrez et al. (2023) created the Sea
Turtle Foraging Algorithm with Hybrid Deep Learning-based Intrusion Detection (STFA-
HDLID). This method identifies and classifies Internet of Drones (IoD) intrusions and for
accuracy, the authors used min-max normalization and Sea Turtle Foraging Algorithm
(STFA) feature selection. The authors also categorized them using Deep Belief Network
(DBN) and Sparrow Search Optimization (SSO) and proposed a new IoD intrusion
detection mechanism. The authors extensively tested STFA-HDLID on a benchmark
dataset. The algorithm was accurate, peaking at 99.51% for TON_IoT and 98.85% for
UNSW-NB15. The results show that the proposed algorithm outperformed its
competitors.

IDS with an evolutionary feature selector and a RF classifier. A unique fitness function
helps evolutionary techniques find relevant features and reduce data dimensionality. The
real positive rate rises, whereas the false positive rate falls. Researchers employ the random
forest technique for anomaly detection due to its multi-classification accuracy and noise
tolerance in huge data sets. The suggested technique selects more trustworthy properties
than current technologies, enhancing categorization. We provide the statistical results and
method comparisons. The UNSW-NB15 and NSL-KDD datasets assess framework
efficacy (Liu & Shi, 2022).
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The authors in Wei et al. (2022) proposed Control Semantics-based Detection
Approach (CONSTDET) which employs control semantics to detect UAV GPS spoofing
attempts using ML. The research collected flight data from real trials to build CONSTDET,
a viable detection system. Training GPS spoofing detection models requires carefully
selecting flight data with control semantics. The data covered dynamic flight and control
operations, such as altitude and horizontal position control. The authors put CONSTDET
on UAV to detect GPS spoofing. The authors also trained and produced the most accurate
classifier using ML. Gasimova, Khoei & Kaabouch (2022) compare bagging, stacking, and
boosting ensemble-based ML algorithms. The GPS security breach tracking capabilities
were assessed by prediction time per sample, memory size, processing time, PMD, PFA,
and accuracy. The stacking model outperformed the other two models in accuracy, PD,
PMD, and FA. The Study in Dang et al. (2022) explores deep ensemble learning and also
proposes a method that detects GPS spoofing in cellular-connected UAVs. GPS-spoofing-
related UAV trajectory abnormalities are identified by measuring route losses between
base stations (BSs) and UAVs. To mitigate environmental impacts on path losses and
ensure reliable identification, The authors use three statistical methods. MLP neural
networks decide path loss statistics on the edge cloud servers. Experimental findings show
that the proposed method can detect GPS spoofing with 97% accuracy with two BS and
83% with one. The proposed solution is unique because it requires no UAV energy or
equipment Dang et al. (2022). The authors in Basan (2022) recommend evaluating UAV
cyber-physical characteristics to identify attacks and results. A new method for producing
false-attack databases and assessing their correctness is also provided in their study. To
solve GPS spoofing attempts, the authors in Panice et al. (2017) used state estimation and a
one-class SVM. For product efficacy and efficiency testing, they also constructed a
simulation environment.

The study in Qiao, Zhang & Du (2017) suggests detecting GPS spoofing with a DJI
Phantom 4 UAV’s monocular camera and IMU sensor. The authors show that
incorporating these sensors can identify GPS spoofing. By analyzing the UAV’s speed
using its sensors, monocular camera, and IMU, the authors can detect spoofing attacks in
5 s. The authors in Al-Wesabi et al. (2022) developed Opposition Poor and Rich
Optimization-based Feature Selection with Optimal Deep Feed-forward Neural Network
(OPRFS-ODFNN) to choose optimal deep feed-forward networks over poor and rich
optimization-based feature selection. A new method for detecting network intrusions in
IoT device communication has been developed by Al-Wesabi et al. (2022). This technique
prioritizes IoD communication network safety. By scaling preliminary features and
identifying important characteristics with OPRFS, OPRFS-ODFNN achieves this goal. The
Optimal Deep Feed-forward Neural Network (ODFNN) model detects and classifies
intrusions using Improved Mayfly Optimization (IMFO). The researchers thoroughly
simulated the OPRFS-ODFNN technique to establish its usefulness. Khan et al. (2021)
aims to boost UAV skills by decentralizing ML architectures with blockchain. This will
enhance data integrity and storage, enabling complex, system-wide UAV decision-making.
Blockchain will lead to decentralized predictive analytics and faster ML model sharing will
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result from blockchain. Their proposed system will demonstrate the feasibility and efficacy
of collaborative intrusion detection for UAV and related applications (Khan et al., 2021).

A perfect partnership between vehicular ad-hoc networks (VANETs) and UAVs could
boost network connectivity and prevent towering infrastructures, ensuring speedy data
transmission. Secure VANETs and UAVs are essential. Deep learning defends VANET
and UAV communications from cyberattacks that compromise data integrity,
confidentiality, and availability. Bangui & Buhnova (2021) examines VANET and UAV
intrusion detection systems using ML. It also addresses research gaps and suggests
Intelligent Transportation System (ITS) security improvements. The study in Ahmetoglu &
Das (2022) examines automatic cyber-attack identification and rapid prediction and
analysis through ML. Research focuses on network traffic anomaly detection,
categorization, grouping, and analysis. Each study assesses datasets, attack detection ML
methods, feature selection, and dimension reduction. Ahmetoglu & Das (2022) also
compares classification methods in several studies to alternatives, performance metrics,
and outcomes. It analyzes open-access network attack statistics and provides a simple
classification algorithm. Finally, it addresses ML’s network attack issues and offers
solutions.

Yakkati et al. (2022) classifies GNSS signals using a multi-correlation receiver,
examining interference-free, multi-path, jamming, and spoofing. The authors assess the
test’s accuracy and confusion matrix using neural networks, SVM, KNN, kernel
approximation, decision trees, discriminant analysis, naive Bayes, and ensemble classifiers.
The study uses multi-correlation output to calculate average power and distortion
correlation for GNSS signal categorization. Da Silva, Ferrão & Branco (2022)UAV swarms
use IDS and it covers categorization, observed infiltration, ML, UAV swarm applicability,
and development standards. After examining 56 relevant studies, they compared them.
This study recommended IDS development. This study is significant because it was the
first Database to meticulously map this topic, this study is significant.

The research in Siemuri et al. (2022) examined 2000–2021 GNSS ML studies. The
authors evaluated the literature methods’ efficacy, advantages, and downsides. The
investigation discovered 213 machine-learning studies. Notably, these results reveal good
GNSS performance across applications. In GNSS usage scenarios, ML produces results like
classical models. While ML models in GNSS have significant potential, their adoption is
minimal. Promoting ML models in positioning, navigation, and timing (PNT) requires
extra effort. Results reveal that hyperparameters, regularization parameters, imbalanced
datasets, correlated features, and dataset size hinder ML. Using linked attributes and
optimizing parameters in a balanced dataset, the Classification and Regression Decision
Tree classifier obtained 99.99% accuracy. The accuracy was 99.98%, the error was 0.2%,
and the false positive was 1.005%. The Random forest model has 99.94% accuracy, 99.6%
likelihood of recognizing the intended outcome, 0.4% possibility of failing to detect it, and
1.01% probability of mistakenly identifying it under similar conditions. The study in Dhal
& Azad (2022) investigates FS extensively. It details FS frameworks and models. FS
algorithms process structured, labeled, or unstructured data. The study covers FS
principles, common approaches, popular datasets, and important contributions from

Badar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2714 16/38

http://dx.doi.org/10.7717/peerj-cs.2714
https://peerj.com/computer-science/


several ML domains relevant to FS applications. This descriptive survey examines FS’s
concepts and application in different issue categories. Overall, the presentation is good in
Dhal & Azad (2022).

Aissou et al. (2021) suggest comparing tree-based ML methods such as RF, Gradient
Boost, XGBoost, and LightGBM to detect GPS spoofing attacks to address the security
issue. XGBoost surpassed the others with 95.52% accuracy and 2 ms detection. These
findings imply that XGBoost’s precision and speed could help UAS. The article Talaei
Khoei, Ismail & Kaabouch (2022) proposes a one-stage feature selection technique to
remove associated and low-importance dataset features. To determine the optimum
assault classifier, this study introduced metric-optimized and weighted dynamic selectors
to determine the optimum assault classifier. We assess ten ML models for accuracy,
detection, false detection, and processing time. Our innovative method dynamically
chooses the best classifier, surpassing ensemble models. This yields 99.6% accuracy, 98.9%
detection likelihood, 1.56% FA likelihood, 1.09% misdetection likelihood, and 1.24 s of
processing time.

This article offers significant improvements that surpass current research on GPS
spoofing attack detection. It has a hybrid model that combines bidirectional long short-
termmemory (BiLSTM) networks with convolutional neural networks (CNN). This makes
detection more accurate than with some machine learning methods. The research utilizes
extensive feature selection methods, such as ANOVA, to identify the most important
features for detecting GPS spoofing, thereby overcoming the shortcomings of inadequate
feature selection in previous studies. We employ stringent oversampling approaches to
address the prevalent issue of imbalanced datasets and ensure reliable detection
performance. The suggested hybrid model exhibits exceptional performance measures,
attaining a precision of 98.84%, an accuracy of 99.25%, an F1 Score of 99.26%, and a recall
of 99.69%, signifying significant advancements over current methodologies. The dataset
includes different types of GPS spoofing attacks, such as simple spoofing, in which fake
GPS signals confuse the UAV’s navigation system, intermediate spoofing, in which GPS
signals are changed gradually to control the UAV, and advanced spoofing, in which the
attacker can fake real signals to get around normal detection methods. The proposed
architecture proposes extensive detection capabilities by tackling these attack types,
rendering it resilient to various GPS spoofing scenarios.

In recent years, the safety of multi-UAV systems (MUSs) has garnered heightened
attention due to increasing threats from composite attacks, including denial-of-service
(DoS) attacks, false data injection (FDI) attacks, camouflage attacks, and actuation attacks
(AAs). In order to mitigate these advanced threats, Gong et al. (2023) introduced a robust
two-tiered system. The framework uses a digital twin architecture to divide the defenses
into two levels: a twin layer (TL) to protect against DoS attacks and a cyber-physical layer
(CPL) to handle unbounded AAs. When a topology-repairing method is combined with a
decentralized adaptive controller, uniformly ultimately bound (UUB) convergence is
guaranteed. This makes multi-agent systems (MUSs) more resistant to composite attacks.
Protecting multi-agent systems (MASs) from malicious threats, including Byzantine
assaults, is a persistent concern in distributed systems. Gong et al. (2024b) created a
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Distributed Byzantine-Resilient Observer (DBRO) that makes sure that high-order multi-
agent systems (MASs) working on directed graphs converge to zero errors in finite time.
This edge-based DBRO system assesses the leader’s state inside a multi-agent network
while mitigating Byzantine threats. Robust graph theory underpins the methodology’s
cascading architecture, which enhances its applicability to both time-invariant and time-
varying topologies, thereby demonstrating notable resilience against Byzantine agents
(Gong, Li & Shu, 2024). The emphasis on multi-agent systems (MASs) and UAV swarms
has brought considerable attention to security issues, especially for human-in-the-loop
(HiTL) systems susceptible to Byzantine assaults. Gong et al. (2024a) created a strong two-
tier hierarchical control system that protects against Byzantine edge attacks (BEAs) and
Byzantine node attacks (BNAs). It uses a digital twin layer (DTL) and a cyber-physical
layer (CPL). The architecture enables a human operator to direct a non-autonomous
leader UAV while mitigating these hostile assaults. The results of their experiments
showed that the control framework worked well at protecting multiple UAV systems. This
suggests that resilient swarm robotics could be useful in dangerous situations (Gong et al.,
2024a). Multi-agent systems (MAS) have made significant progress in resilient control,
particularly in preventing Byzantine attacks, which pose a significant threat due to their
ability to disseminate false information through compromised agents. Gong et al. (2024b)
presented an innovative twin-layer hierarchical control scheme that separates the defense
mechanisms for Byzantine Node Attacks (BNAs) and Byzantine Edge Attacks (BEAs).
Their method uses a DTL to fight BEAs and a CPL with a decentralized adaptive controller
to fight BNAs. This unique design improves system resilience by implementing a trusted-
node method to protect important nodes and applying a chattering-free control scheme for
efficient response to diverse attack scenarios. Compared to other protection methods, this
two-layer strategy guarantees better performance for both compromised and benign
agents. It sets a new standard for multi-agent system security in hostile environments. Path
planning for UAVs in hostile situations is essential, especially when confronting
clandestine assaults that alter sensor data or control inputs undetected. He et al. (2023)
present a strong path planning method to protect ultrawideband (UWB) sensors from
hidden attacks. They use Pontryagin’s maximal principle and think of the problem as a
Stackelberg game. This method enables the UAV to calculate energy-efficient routes while
predicting and alleviating the impacts of covert assaults. Their approach is innovative in
tackling vulnerabilities in UWB sensors and enhancing resilience through game theory,
beyond conventional tactics that concentrate on detectable threats such as GPS spoofing.
This study makes UAVs safer by simulating how an attacker and a defender interact with
each other. It then offers ways to defend against sneaky attacks while still completing
missions in both single base station (SBS) and double base station (DBS) settings. These
advances have tangible implications for improving UAV resilience and operational
integrity, particularly in military, surveillance, and emergency response contexts.

By conducting in-depth research and thorough analysis, it has become evident that the
detection of GPS spoofing attacks is of paramount importance due to their potential to
compromise critical systems reliant on accurate positioning information. The need for a
new framework arises from the limitations of existing methods in effectively detecting GPS

Badar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2714 18/38

http://dx.doi.org/10.7717/peerj-cs.2714
https://peerj.com/computer-science/


spoofing attacks. Current approaches often struggle with minimizing detection time,
ensuring transferability, and reducing false negatives. Moreover, they may lack the
capability to handle complex attacks that manipulate ambient parameters or duplicate
natural trajectories without sufficient context. These limitations highlight the necessity for
a more comprehensive and efficient framework, which prioritizes dataset balancing,
feature extraction, noise removal, and NN efficiency to address these challenges effectively.

PROPOSED MODEL
By conducting in-depth research and thorough analysis, a new conceptual framework
called DeepSpoofNet is being developed, as illustrated in Figs. 2 and 3. This framework
addresses the challenges of detecting GPS spoofing attacks by focusing primarily on
minimizing detection time while simultaneously enhancing transferability and reducing
false negatives. To detect GPS spoofing attempts, the DeepSpoofNet framework increases
dataset balancing, feature extraction, noise removal, and NN efficiency. The suggested
UAV GPS spoofing attack detection paradigm cleans and sanitizes flight log data. Initially,
null values and duplicate data are removed to build a reliable dataset. The sanitized data is
balanced in the second phase to address class imbalances and assure target class
representation. This stage helps the model understand minority and majority-class events.
Earlier research has detected GPS spoofing attacks using local variables x, y, z, vx, vy, and
vz. However, complex attacks that alter ambient parameters or duplicate natural
trajectories may be harder to discern without context, although they capture crucial
positional dynamics. To overcome this constraint and strengthen our technique, we
include both local and global variables, such as latitude, longitude, altitude, and sensor
data.

A larger dataset provides a more comprehensive assessment framework. Global factors
and sensor data allow the algorithm to distinguish manipulated signals from normal
signals, enhancing GPS signal behavior knowledge. We prioritize processing cost reduction
and detection accuracy. Sensor data, as well as local and global variables, help the system
detect subtle and complex GPS spoofing attacks. The third phase, feature analysis, selects
features optimally based on the data balance. The suggested framework explores the best
combination of FS and DL approaches to tackle the crucial problem of identifying GPS
spoofing attacks on unmanned aerial vehicles. By altering GPS signals, GPS spoofing can
result in mission failures or unexpected behavior, which is a serious danger to UAV
operations. By analyzing how FS techniques and DL algorithms interact and determining
the best combinations for performance, this work improves detection systems. A
significant area of attention is the problem of unbalanced datasets, which is a frequent
obstacle in GPS spoofing detection. When spoofing attempts are neglected, biased models
resulting from imbalanced data frequently fail to identify them. The system uses
sophisticated oversampling techniques to balance the dataset in order to address this. In
order to preserve just the most essential features for spoofing detection, the framework also
gives priority to efficient FS. This enhances the precision and resilience of DL models while
lowering computational complexity. The framework advances security frameworks and
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ensures robust operation in hostile contexts by successfully merging FS and DL to provide
a scalable and dependable solution for GPS spoofing detection on UAVs.

The DeepSpoofNet method finds the best model training features, enhances accuracy,
and minimizes the true negative rate. By selecting the most discriminative attributes, the
model focuses on UAV GPS spoofing attack detection. After curating and optimizing the
dataset, we train a NN model. To detect UAV GPS spoofing, the NN learns complex
patterns and correlations from features to identify UAV GPS spoofing. A trained model
detects and mitigates GPS spoofing risks for real-time UAV security. The model detects
UAVGPS spoofing attacks utilizing data cleaning, balancing, feature analysis, NN training,
and deployment. Data quality, class imbalance, feature relevance, and NN allow the model
to detect GPS spoofing attacks and secure UAV systems. To the best of our knowledge, we

Figure 2 DeepSpoofNet’s proposed model diagram. Full-size DOI: 10.7717/peerj-cs.2714/fig-2
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provide the best techniques and strategies for each model phase. Accuracy, computational
needs, and robustness determine the optimum data cleaning, data balancing, feature
analysis, and NN training techniques. This research improves UAV GPS spoofing attack
detection, allowing for more robust and efficient security and operational integrity
detection systems.

As shown in Fig. 4, this model uses convolutional, pooling, normalizing, and recurrent
layers to detect GPS spoofing in UAVs. The first step involves transforming the data to
align with the input format of the convolutional layer. The first Conv1D layer uses 64
filters to detect local GPS signal characteristics, such as frequency or intensity shifts, that
could indicate spoofing. With MaxPooling, you can reduce dimensionality to focus on key
features and boost computing performance. Handling raw GPS data with large-scale or
noise differences requires batch normalization to stabilize the learning process by
normalizing the output.

A second Conv1D layer with 128 filters extracts more complicated signal properties,
and max pooling reduces data size while maintaining crucial information. The
Bidirectional LSTM layer and other recurrent neural networks look at time relationships
from both directions. This is crucial for identifying spoofing attacks, which modify timing
and signals. Flattening multi-dimensional data into a 1D vector prepares it for fully
connected layers. The Dense layer processes these features, producing the sigmoid output
layer that detects GPS signal spoofing. To capture GPS data’s local and global patterns, the
architecture uses convolutional layers for feature extraction and LSTMs for time-series
data. This method helps the model detect spoofing attempts in complex or imbalanced
datasets.

Figure 3 DeepSpoofNet’s proposed model abstract diagram. Full-size DOI: 10.7717/peerj-cs.2714/fig-3
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RESULTS AND DISCUSSIONS
The experimental inquiry includes preparing and analyzing UAV flight log data, creating
and setting up the model architecture, and testing the model’s performance. The datasets
from genuine UAV flights cover a wide range of authentic and practical settings, ensuring
the model’s robustness and usefulness in real-world situations.

Hardware/software used
In this study, the experimental PC utilized is equipped with an Intel Core 2.4 GHz i5 6th
generation processor, 8 GB of RAM, and a 256 GB hard disk. Prioritizing resource
efficiency and accessibility, the experiment was conducted without a graphics card.
Anaconda Navigator serves as the management tool for packages and environments in our
lab, eliminating the need to manually enter conda commands in a terminal. For practical
studies, Jupyter Notebook is employed, offering a user-friendly interface for code
development and analysis. Python serves as the primary programming language, ensuring
compatibility and versatility for research experiments. This integrated approach enhances
workflow, facilitating efficient experimentation and code creation within the research
environment. A diverse range of libraries are utilized in the practical study to enable
effective data manipulation, analysis, and ML. Numpy 1.26.0 (van der Walt, Colbert &
Varoquaux, 2011) serves as a foundational tool for numerical operations and array
manipulations, along with essential scientific computing functionalities. Pandas 2.1.1
(McKinney, 2010) simplifies structured data management and preparation for exploratory
data analysis. Seaborn 0.13.0 (Waskom, 2021) and Matplotlib 3.8.0 (Hunter, 2007) are
employed for creating visually appealing plots and graphs that elucidate experimental

Figure 4 DeepSpoofNet’s proposed model detail diagram.
Full-size DOI: 10.7717/peerj-cs.2714/fig-4
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results. TensorFlow 2.14.0 (Abadi, 2016) and Keras 2.14.0 (Chollet, 2015) support the
implementation of complex neural network models, while scikit-learn 1.3.1 (Pedregosa,
2011) provides reliable ML algorithms and model assessment tools. The experimental
framework is constructed around this carefully selected library collection to ensure the
attainment of dependable and efficient study goals.

Dataset description
The study’s dataset comprises a carefully curated collection of both synthetic and real-
world data, capturing a diverse array of scenarios essential to the study’s objectives. This
comprehensive dataset ensures a thorough examination of the proposed hypotheses. To
maintain data integrity and enable trustworthy experimentation and analysis, rigorous
preparation techniques were meticulously applied. This meticulous preparation not only
safeguards data integrity but also enhances the reliability of the experimental process. The
UAV Attack dataset (Whelan et al., 2020), provided by the IEEE for research in UAV
security, aggregates instances of UAV attacks orchestrated by various jammers. Table 5
outlines the features used in this study, while Table 6 illustrates the ratio of benign to
attacked data.

Data pre-processing
This research employed various essential strategies during the preprocessing phase to
achieve data balancing, cleaning, and feature selection. Initially, we utilized SMOTE
(Synthetic Minority Oversampling Technique) to rectify class imbalance within the
dataset. Given the infrequency of GPS spoofing attempts relative to standard data points,
SMOTE facilitated the creation of synthetic samples for the minority class. This ensured
the equilibration of the dataset and provided the model with sufficient examples of both
authentic and counterfeit data, thereby boosting its ability to generalize across categories.
After balancing the data, we sanitized the dataset to remove any null or missing values,
which ensured uniformity across all characteristics. This stage was crucial for preventing
inadequate information during the model training process, which could result in
inaccurate predictions or biased outcomes. We employed various statistical methods for
feature selection to reduce complexity and enhance the effectiveness of the model. We
employed PCA to transform the dataset into a lower-dimensional space, thereby
maximizing variance and reducing redundancy. Furthermore, we assessed feature
relevance using chi-square tests, Pearson correlation coefficient (PCC), and ANOVA
(Analysis of Variance), each providing distinct insights into the relationship between
characteristics and the objective variable. These strategies facilitated the elimination of
irrelevant or redundant features, preserving the most informative information for model
training. We ultimately applied the model to the altered datasets produced by each feature
selection method (PCA, chi-square, PCC, and ANOVA). We subsequently compared the
results using the model’s performance measures, which included accuracy, precision,
recall, and F1-score. We chose the optimal combination of features and preprocessing
techniques for subsequent model optimization, ensuring the use of the most efficient
configuration in the final implementation.
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Table 5 Description of features.

# Feature Description

1 timestamp Time at which the data is recorded

2 global_lat Latitude coordinate of the GPS position

3 global_lon Longitude coordinate of the GPS position

4 global_alt Altitude above sea level of the GPS position

5 global_eph Estimated horizontal position error of the GPS data

6 global_epv Estimated vertical position error of the GPS data

7 lo_x X-coordinate of local position

8 lo_y Y-coordinate of local position

9 lo_z Z-coordinate of local position

10 lo_vx Velocity component in the x-direction of local position

11 lo_vy Velocity component in the y-direction of local position

12 lo_vz Velocity component in the z-direction of local position

13 lo_ax Acceleration component in the x-direction of local position

14 lo_ay Acceleration component in the y-direction of local position

15 lo_az Acceleration component in the z-direction of local position

16 lo_eph Estimated horizontal position error of local position data

17 lo_epv Estimated vertical position error of local position data

18 lo_evh Estimated horizontal velocity error of local position data

19 lo_evv Estimated vertical velocity error of local position data

20 alt_ellipsoid Altitude above ellipsoid

21 s_variance_m_s Speed variance

22 c_variance_rad Course variance

23 hdop Horizontal dilution of precision

24 vdop Vertical dilution of precision

25 noise_per_ms Noise per millisecond

26 jamming_indicator Indicator of jamming

27 vel_m_s Velocity magnitude

28 vel_n_m_s Velocity in the north direction

29 vel_e_m_s Velocity in the east direction

30 vel_d_m_s Velocity in the down direction

31 cog_rad Course over ground in radians

32 timestamp_time_relative Time relative to the start of the dataset

33 heading Aircraft heading

34 heading_offset Offset of heading

35 vel_ned_valid Validity of velocity in North, East, Down directions

36 satellites_used Number of satellites used in the fix

37 mag[0] Magnetic field strength in the x-direction

38 mag[1] Magnetic field strength in the y-direction

39 mag[2] Magnetic field strength in the z-direction

40 baro_alt_meter Barometric altitude

41 baro_temp_celsius Barometer temperature in Celsius
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Feature selection
Developing a reliable and effective model to identify GPS spoofing attempts on UAV
requires feature selection (FS). The study uses PCA, chi-square, PCC, and ANOVA for FS.
PCA, a popular linear dimension reduction method, was used to find the dataset’s most
variable components. To choose the most important features for classification, the chi-
square statistical test was used to evaluate the features and the target variable. The linear
link between each attribute and the target variable was assessed using the PCC. A stronger
correlation indicates greater relevance. ANOVA was performed to determine how much
each component explained target variable variability, with smaller p-values indicating
greater relevance. Our FS method reduces the dataset’s dimensionality and identifies the
best characteristics for building a robust and accurate GPS spoofing detection model for
UAV. The recommended detection model is trained and tested using the selected
attributes, outperforming current methods, and shows how FS improves UAV GPS-
spoofing attack detection systems.

Model evaluation
The framework requires model building following dataset preparation. Predict multiple
modalities for effective classification. The article uses CNN and ANN deep learning
algorithms. These models are used with chi-square, PCC, ANOVA, and PCA to find the
best UAV GPS spoofing assault detection approach. Industry guidelines require us to split
the dataset 70% for model training and 30% for testing. Because they work well in binary
datasets, this study’s hyper-parameter settings use sigmoid and RELU activation functions.
We optimize the models with ADAM because of its strength and noise tolerance. The loss
function is binary cross-entropy since GPS spoofing detection is binary. We alter hyper-

Table 5 (continued)

# Feature Description

42 baro_pressure_pa Barometric pressure in Pascals

43 rho Air density

44 gyro_rad[0] Gyroscopic angular velocity around the x-axis

45 gyro_rad[1] Gyroscopic angular velocity around the y-axis

46 gyro_rad[2] Gyroscopic angular velocity around the z-axis

47 acc_m_s2[0] Acceleration in the x-direction measured by accelerometers

48 acc_m_s2[1] Acceleration in the y-direction measured by accelerometers

49 acc_m_s2[2] Acceleration in the z-direction measured by accelerometers

Table 6 Dataset before and after balancing.

Comparison The ratio of benign to attacked data

Before oversampling 1:4

After oversampling 1:1
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parameters, especially epoch fluctuation, to discover the optimal GPS spoofing attack
detection epoch configuration. Activation functions and optimizers are distinguished by
their binary dataset and GPS spoofing detection capabilities. This technique optimizes
deep learning model hyper-parameters and FS. Dataset experiments test the framework’s
GPS spoofing detection. Our machine learning model evaluation criteria prompted us to
divide the dataset into 70% training and 30% testing sets. This section employs two deep-
learning models and four feature extraction methods. This study evaluates GPS signal
alteration detection models. The dataset’s training helps algorithms identify benign and
spoofed patterns. Chi-square, PCC, ANOVA, and PCA extract characteristics from two
deep learning models with distinct architectures. A detailed analysis of the models’
performance across feature sets shows their strengths and flaws. To discover the optimal
GPS spoofing detection setup, this study changes feature extraction models and
approaches.

COMPARATIVE ANALYSIS
This comprehensive study compares GPS spoofing attack detection studies using classic
ML and advanced deep learning models. The early attempts used ANNmodels with varied
FS strategies.

ANN with FS methods
ANN performance with PCA, PCC, Chi-Squared test, and ANOVA helps us detect GPS
spoofing assaults. PCA gives the model 97.48% accuracy, exhibiting good performance.
The PCA is less precise than other methods. PCA captures variance effectively; however, it
may not be as excellent at identifying subtle GPS spoofing patterns. Table 7 shows ANN
with different FS methods. GPS spoofing detection concerns arise from the PCC’s 80.91%
precision. Lower precision increases the likelihood of declassifying irrelevant cases,
indicating feature interaction issues. A 91.12% precision and 94.72% accuracy make the
chi-squared test good.

ANN with FS method maintains accuracy while identifying patterns, striking a balance
between precision and recall as shown in Table 7, and Fig. 5. The chi-squared test produces
competitive GPS spoofing detection (FS) results. ANOVA consistently performs well,
exhibiting 95.99% precision and 97.40% accuracy. ANN with FS technique aids in
detecting GPS spoofing by uncovering subtle group deviations. A thorough analysis
underscores the importance of evaluating FS methods in conjunction with ANN. While
PCA is accurate, its precision may limit practicality. On the other hand, the PCC, offering

Table 7 Performance metrics: ANN with different FS methods.

FS Method Precision Accuracy F1 score Recall

PCA 97.07 97.48 97.52 97.97

PCC 80.91 86.34 87.59 95.48

Chi-squared test 91.12 94.72 95.00 99.22

ANOVA 95.99 97.40 97.47 98.99
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lower precision, may not be suitable for applications requiring high accuracy in GPS
spoofing detection. The balanced performance of the chi-squared test is intriguing for
precision and memory considerations. With its precision and accuracy, ANOVA emerges
as the optimal FS method for robust GPS spoofing detection within the ANN framework.
Particularly adept at identifying GPS spoofing trends, ANOVA can unveil significant
changes and connections across variables.

CNN with FS methods
This CNN-based FS study has enhanced GPS spoofing attack detection. The comparison
underscores crucial performance parameters, such as model efficacy and accuracy as
shown in Table 8, and Fig. 6. Notably, CNN and PCA demonstrated a tradeoff with 20 and
18 features, respectively. Utilizing 18 features, the model exhibited adaptability to a smaller
feature space, achieving 96.38% precision and 97.87% accuracy. This adaptability ensures
efficient calculation and resource utilization. However, the PCC significantly diminished
CNN performance measures, showcasing challenges in understanding complex feature
interactions. Linear correlation alone may prove insufficient for identifying GPS spoofing.
Conversely, the CNN with chi-squared test effectively identifies variable dependencies,
yielding 99.34% precision and 96.89% accuracy. Nonetheless, the lower F1 score and recall
may pose challenges in balancing all metrics, potentially obscuring critical data trends. On
the other hand, CNN ANOVA FS consistently delivered strong performance, with an F1
score, precision, accuracy, and recall of 98.23%, 98.94%, 98.96%, and 99.69%, respectively.

This group variance-focused method gathered complex GPS signal data patterns with
several features. The comparison study concludes that CNN FS is crucial for GPS spoofing
detection. Balance is needed because the chi-squared test was precise but difficult to recall.
With its vast feature set and excellent performance across all parameters, ANOVA was the
most robust method. This work informs the design and optimization of GPS spoofing
detection systems.

Figure 5 Comparison of metrics graphs for ANN. Full-size DOI: 10.7717/peerj-cs.2714/fig-5
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CNN-BiLSTM with FS methods
GPS spoofing attack detection using CNN-BiLSTM with various FS methods results in
diverse performance metrics, as depicted in Table 9 and Fig. 7. Leveraging PCA’s 18
attributes, the model exhibits strong performance with 97.17% precision, 98.11% accuracy,
98.15% F1 score, and 99.14% recall. This underscores the effectiveness of PCA in gathering
data for accurate categorization. Conversely, CNN-BiLSTM demonstrates subpar
performance with PCC FS. The model achieves a precision of 78.77%, an accuracy of
86.30%, an F1 score of 88.03%, and a recall of 99.77% for GPS spoofing attacks, contrasting
with PCA. Here, the linear relationship of PCC may not offer meaningful insights.
Conversely, employing the Chi-Squared test for feature selection enhances precision,
accuracy, F1 score, and recall by 93.17%, 96.30%, 96.47%, and 100.00%, respectively. This
underscores the significance of feature independence in the model’s ability to detect subtle
GPS modification patterns. Employing ANOVA characteristics, CNN-BiLSTM achieves
99.25% accuracy, 98.84% precision, 99.26% recall, and a 99.26% F1 score, leading to
improved performance. This highlights the capability of ANOVA in identifying
classification-relevant traits. The comparison underscores the impact of FS on CNN-
BiLSTM GPS spoofing attack detection performance.

Table 9 shows results, while Fig. 7 show graphs. ANOVA emphasizes essential feature
contributions; chi-squared tests feature independence; and PCA captures overall variance.

Table 8 Comparative analysis of CNN with PCA, PCC X2 and ANOVA.

FS method Precision Accuracy F1 Score Recall

PCA 96.38 97.87 97.93 99.53

PCC 77.49 84.29 86.20 97.12

Chi-squared test 99.34 96.89 96.84 94.47

ANOVA 98.23 98.94 98.96 99.69

Figure 6 Comparison of metrics graphs for CNN. Full-size DOI: 10.7717/peerj-cs.2714/fig-6
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These results drive FS and implementation to improve CNN-BiLSTM GPS spoofing
detection accuracy.

Overall best-performed models with FS methods
We tested different FS methods and deep learning model combinations to find the best
GPS spoofing attack detection method. ANN and CNN were integrated with PCA and
ANOVA for FS. The experiment produced ANN outcomes with 97.07% precision, 96.48%
accuracy, 97.52% F1 score, and 97.97% recall using 20 PCA-selected features. This method
provided a baseline for comparison and demonstrated PCA’s ability to extract ANN
features. CNN and ANOVA indicated considerable improvements: precision 98.23%,
accuracy 98.94%, F1 score 98.96%, and recall 99.69%. The CNN architecture detected GPS
signal to fake better with ANOVA’s discriminative properties. Out of all the methods
tested, CNN-BiLSTMwith ANOVA worked best. The hybrid model had 98.84% precision,
99.25% accuracy, a 99.26% F1 score, and a 99.69% recall. GPS spoofing detection was more
predictive using ANOVA-selected features and CNN and BiLSTM layers. The comparison
of these results underscores the importance of hybrid models, which combine deep
learning architectures with well-chosen features. ANN and PCA work well, but CNN and
BiLSTM layers with ANOVA-selected features provide unprecedented detection accuracy.

This investigation illustrates the optimal combinations and underscores the importance
of tailoring model architectures to feature attributes for enhancing GPS spoofing detection
systems. Tables 10 and 11 respectively present a comparative analysis of the best

Table 9 Comparative analysis of CNN-BiLSTM with different FS methods.

FS method Precision Accuracy F1 score Recall

PCA (18 Features) 97.17 98.11 98.15 99.14

PCC 78.77 86.30 88.03 99.77

Chi-squared test 93.17 96.30 96.47 100.00

ANOVA 98.84 99.25 99.26 99.69

Figure 7 Comparison of graphs for CNN-BiLSTM. Full-size DOI: 10.7717/peerj-cs.2714/fig-7
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performing GPS spoofing detection models and complexity analysis of deep learning
models with PCA, PCC, X2, and ANOVA. Additionally, Fig. 8 depict the results. We used
a methodical approach to choose models by combining PCA, chi-square, PCC, and
ANOVA feature selection methods with CNN-BiLSTM and CNN models. Both models
assessed every dataset with selected features. The CNN-BiLSTM integrated CNN for
feature extraction with BiLSTM to identify sequential patterns, whereas the independent
CNN concentrated on spatial feature extraction. We evaluated performance using
accuracy, precision, recall, and F1 score for each combination. These metrics guided the
selection of the most effective feature selection approach and model architecture, ensuring
maximum accuracy and resilience for the GPS spoofing detection framework.

Comparative analysis with state-of-the-art research
UAVs are difficult to detect GPS spoofing, although machine learning models like
DeepSpoofNet, Wu et al. (2023), and Wei et al. (2022) offer several solutions.
DeepSpoofNet, our model, performs better due to its complex design, extensive feature
selection, and effective data imbalance control. CNNs and BiLSTM layers make up
DeepSpoofNet’s hybrid design. In this integration, the model can detect geographical and
temporal correlations in GPS signal data, effectively distinguishing legitimate signals from
fakes. The CNN-BiLSTM design catches detailed GPS spoofing signal distortions, making
it more robust to many assault situations. DeepSpoofNet selects only the most important

Table 10 Comparative analysis of best performed GPS spoofing detection models.

Model Precision Accuracy F1 score Recall

ANN with PCA 97.07 97.48 97.52 97.97

CNN with ANOVA 98.23 98.94 98.96 99.69

CNN-BiLSTM with ANOVA 98.84 99.25 99.26 99.69

Table 11 Complexity analysis: deep learning models with PCA, PCC, X2 and ANOVA.

Algorithm FS method Training time (ls)

ANN PCA 9,191.75

ANN PCC 10,539.77

ANN X2 7,184.03

ANN ANOVA 7,838.01

CNN PCA 8,655.07

CNN PCC 10,158.06

CNN X2 9,617.09

CNN ANOVA 14,127.25

CNNBi-LSTM PCA 10,164.02

CNNBi-LSTM PCC 10,396.96

CNNBi-LSTM X2 8,592.84

CNNBi-LSTM ANOVA 7,005.93
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and relevant features using ANOVA. Reducing noise and focusing the model on key data
improves forecast accuracy. With the synthetic minority oversampling technique,
DeepSpoofNet reduces class imbalances. This helps the model learn from dominant and
minority classes—even rare spoofing events. DeepSpoofNet performs well by training on a
large dataset that comprises self-experiment data and IEEE Dataport data. It has a
spectacular 99.25% detection accuracy, 98.84% precision, 99.69% recall, and 99.26% F1
score. These results show that DeepSpoofNet is the best GPS spoofing detection
technology. Wu et al. (2023) built a CNN-BiLSTM model to emphasize GPS signal spatial
and temporal characteristics. Table 12 provides a detailed comparison of the state-of-the-
art methods.

In contrast, Wei et al. (2022) uses XGBoost, a gradient-boosting algorithm that works
well with structured data. For GPS spoofing detection, Wei et al. (2022) prioritize flight
dynamics—latitude, longitude, altitude, velocity, and orientation angles (roll, pitch, yaw).
Wei et al. (2022) model modifies the flight dataset for UAV activities, making it domain-
specific. Although XGBoost manages structured data well, Wei et al. (2022) model is less
accurate than DeepSpoofNet. Because of its hybrid design, feature selection, and class

Figure 8 Comparison of graphs for best performed GPS spoofing detection models and complexity analysis.
Full-size DOI: 10.7717/peerj-cs.2714/fig-8
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imbalance mitigation, DeepSpoofNet outperforms Wu et al. (2023) and Wei et al. (2022)
DeepSpoofNet uses CNN-BiLSTM layers, ANOVA feature selection, and SMOTE to
provide the most accurate and reliable GPS spoofing available. It is the best way to protect
UAVs against GPS spoofing.

CONCLUSION AND FUTURE WORK
This study has investigated various ML, deep learning, and non-ML methods for detecting
UAV GPS spoofing. Previous models were found to have several limitations, which were
thoroughly examined in this research. While ML algorithms for detecting UAV GPS
spoofing attacks have been extensively researched, challenges such as unbalanced datasets
and inadequate FS for model training persisted in experimental approaches. Through a
deep technical comparison, this article has identified the most effective model training
algorithms for GPS spoofing detection. The proposed DeepSpoofNet framework, utilizing
NN and filtering, represents the convergence of technology, security, and artistic
expression in GPS spoofing attack detection. By employing balanced datasets to reduce
bias and enhance model training, filtering to eliminate noise and determine UAV state,
and FS and dataset extraction to improve model performance and efficiency, this
framework addresses the limitations of current GPS spoofing attack detection methods on
UAVs. Specifically, it tackles strategies for managing imbalanced datasets, optimal feature
engineering, and key performance analysis parameters for model effectiveness. Upon
reviewing the most effective GPS spoofing attack detection methods for UAVs, it became
evident that the limited range of features was a significant constraint. Local features such as
position and velocity were prioritized, hindering proper identification. To overcome this
limitation, a novel model was introduced that utilizes a wider range of GPS and other
sensor properties, resulting in improved accuracy and robustness in GPS spoofing attack
detection. The examination encompassed the utilization of a GPS spoofing attack dataset,
normalization techniques using NumPy and Pandas, as well as addressing data imbalance
through SMOTE. FS methods such as PCA, PCC, chi-squared test, and ANOVA were
meticulously paired with three deep learning models namely ANN, CNN, and CNN-
BiLSTM. Evaluation criteria included model performance metrics such as accuracy, F1-
score, recall, and precision. The comparative analysis shed light on the efficacy of different
model architectures and FS configurations, revealing superior performance in detecting
GPS spoofing assaults on UAV with certain combinations. For instance, the CNN-BiLSTM
with PCA combination utilizing 18 features demonstrated 97.17% precision, 98.11%
accuracy, 98.15% F1-score, and 99.14% recall. In conclusion, this study advances the field

Table 12 Comparative analysis with state-of-the-art research.

Study FS Acc. Prec. Rec. F1 Data

DeepSpoofNet ANOVA 99.25 98.84 99.69 99.26 Whelan et al. (2020)

Wu et al. (2023) SHAP 99.1 N/A N/A N/A Sim.

Wei et al. (2022) DT 97.70 98.70 96.76 97.72 Realtime dataset

Badar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2714 32/38

http://dx.doi.org/10.7717/peerj-cs.2714
https://peerj.com/computer-science/


of UAV GPS spoofing assault detection by delineating the varied efficacy and performance
of FS strategies and deep learning models. This study represents a significant advancement
in UAV GPS-spoofing assault detection. By addressing earlier approach flaws and
incorporating innovative alternatives, the proposed model enhances accuracy and
robustness. Through rigorous methodologies including SMOTE for managing unbalanced
datasets and investigation of feature engineering strategies, this study provides valuable
insights for improving UAV security against GPS spoofing attacks.

Future research and development in UAV GPS spoofing attack detection presents
several avenues for exploration. Real-time data streaming can enhance model adaptability
to dynamic environments while integrating additional environmental factors like signal
intensity and weather conditions could bolster model robustness. Ensemble techniques
that amalgamate the strengths of multiple models may yield more accurate and resilient
detection systems. Further optimization of architectural layouts and hyperparameters
tailored to specific scenarios could enhance model performance. Additionally,
investigating the impact of attack complexity on model efficacy and studying adversarial
assaults on GPS spoofing detection models are imperative for fortifying systems against
potential threats.
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