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ABSTRACT
Adverse weather conditions such as haze, fog, and smog degrade image visibility, adversely affecting the performance of vision-
based systems. Existing dehazing methods often struggle with non-uniform haze distributions, limited detail restoration, and
poor generalization across diverse scenes. To overcome these limitations, this paper presents a deep learning-based dehazing
framework that jointly restores image clarity and detail. Unlike conventional algorithms that often neglect fine structure recovery,
our architecture incorporates four specialized sub-modules: (i) a noise attention module for enhancing noise suppression and
feature preservation; (ii) an adaptive ConvNet module; (iii) a feature extraction module for capturing salient image features;
and (iv) a detail refinement module to enhance spatial fidelity. The architecture is trained in an end-to-end manner to restore
both structural integrity and colour consistency under challenging conditions. Extensive experiments conducted on synthetic
and real-world datasets, including indoor, outdoor, underwater, night-time, and remote sensing scenarios, demonstrate superior
generalization capability. In the SOTS indoor dataset, ourmethod achieves a PSNRof 28.44 dB and an SSIMof 0.967, outperforming
several state-of-the-art methods. Evaluations using additional metrics such as CIEDE2000 and MSE confirm the effectiveness of
the proposed method in handling dense and heterogeneous haze while preserving fine textures and visual fidelity.

1 Introduction

Haze and related atmospheric conditions degrade image quality
by reducing contrast and visibility, significantly affecting both
low- and high-level computer vision tasks [1]. To address this,
a variety of dehazing techniques have been proposed, including
contrast enhancement [2], prior-based [3], and, more recently,
deep learning-based based [4]. Among these, data-driven single
image dehazing (SID) methods have shown great promise due
to their ability to learn complex mappings directly from data
without relying on hand-crafted priors. However, existing meth-
ods often struggle in non-uniform haze conditions and fail to

preserve fine details, highlighting the need for more robust and
generalizable solutions.

The structure of the physical scattering model is shown in
Figure 1. It can be expressed as follows.

𝐹(𝑥) = 𝐺(𝑥) ⋅ 𝑇(𝑥) + 𝛾 ⋅ (1 − 𝑇(𝑥)) (1)

where 𝐺(𝑥) represents the clear image, 𝑇(𝑥) indicates the
transmission coefficient, and 𝛾 signifies the atmospheric factor.
Upon examining the equation above, it is evident that the only
familiar element is the hazy image𝐹(𝑥), while the other elements
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FIGURE 1 Atmospheric scattering model.

represent unknown terms. The computation of the transmission
factor is expressed as

𝑇 = 𝑒−𝛿𝑑 (2)

where 𝛿 signifies the scattering coefficient and 𝑑 denotes the
range between the scene and the sensors. Subsequently, the
restored image can be described as

𝐺(𝑥) = 𝐹(𝑥) − 𝐵

𝑇(𝑥)
(3)

Estimating the transmission map 𝑇(𝑥) and atmospheric light 𝐵 is
central to image dehazing but remains an ill-posed challenge due
to their inherent uncertainty. To overcome this, prior-based single
image dehazing (SID) methods impose constraints derived from
image statistics or physical assumptions. Two major traditional
approaches have emerged: contrast enhancement and prior-
based techniques. Contrast-based method [2] improve visibility
by boosting brightness and contrast but risk information loss in
brightened regions.

In addition, prior-based techniques have been proposed that
exploit statistical or physical assumptions, such as dark channel,
wavelet transform, and colour attenuation priors [5]. Thesemeth-
ods often outperform contrast-based techniques, but typically
involve higher computational complexity.

Recent advances in deep learning have led to significant
improvements in visual perception tasks [6]. Learning-based SID
techniques have emerged [7], leveraging convolutional neural
networks (CNNs) to predict transmissionmaps or directly restore
clean images.

DehazeNet [8] estimates transmission using a CNN-based archi-
tecture, while MSCNN [9] performs multi-scale transmission
prediction. Holistic networks such as GridDehazeNet [10] bypass
intermediate estimations by learning a direct mapping from hazy
to clear images, offering improved restoration.

Although these methods differ in structure, they share the
fundamental goal of estimating the unknowns in the atmospheric
scatteringmodel (e.g.𝐵 and𝑇(𝑥)) to recover the clean image𝐺(𝑥)
as described in Equation (1).

From an estimation theory stand-point, most dehazing tech-
niques follow a module-based design, attempting to restore

clear images by estimating intermediate variables such as 𝐵

and 𝑇(𝑥). However, this strategy has inherent limitations, as
the estimation of these parameters does not always guarantee
accurate reconstruction of 𝐺(𝑥), especially when evaluated using
the same objective metrics.

Consequently, plug-in models trained on synthetic datasets often
fail to generalize well to real-world conditions, limiting their
practical applicability.

Despite significant progress in deep learning-based dehazing,
many existing methods operate under the assumption that the
haze is uniformly distributed. However, as shown in Figure 2,
real-world haze often follows a non-uniform distribution, devi-
ating from the idealized homogeneous model. For instance, the
green halo in non-homogeneous haze appears more diffused
around the object, contrasting with the sharper boundaries in
homogeneous haze scenarios. In homogeneous haze removal,
traditional methods often produce dehazed outputs with reduced
contrast and loss of fine details. This limitation stems from
their inability to establish a robust mapping between hazy and
clear images, primarily due to the restricted learning capacity
of their core components when faced with complex or non-
uniform haze conditions [4]. To provide a holistic view of
recent advancements in image dehazing, Table 1 compares state-
of-the-art methods and the proposed approach in terms of
architecture, preprocessing needs, dataset variety, performance
metrics, strengths and limitations. This comparative analysis
highlights the domain adaptability, structural innovation, and
evaluation rigor of our model. The remaining sections of the
paper are structured as follows. Section 2 provides an overview of
recent advances in dehazingmethods, with a focus on those based
on deep learning. Section 3 introduces our proposed model and
outlines its keymodules. Section 4 elaborates on the datasets, and
Section 5wraps up the findings and explores potential avenues for
future research.

1.1 Motivation and Key Contributions

Haze removal is often accompanied by the loss of important
background details, leading to degradation in visual quality.
Many existing single-image dehazing methods emphasize haze
suppression while overlooking texture refinement, resulting in
incomplete restoration. To overcome the limitations of ASM-
dependent models and their poor adaptability in real-world
heterogeneous haze, this work proposes a flexible, learning-based
framework that eliminates the need for handcrafted priors. To
address this, the proposed method integrates both dehazing and
detail enhancement in a unified framework. It introduces four
specialized components: a noise attenuation module (NAM), an
adaptive ConvNet module (ACNM), a feature extraction module
(FEM), and a detail refinement module (DRM). Each module
is designed to handle a distinct restoration task, enabling more
effective recovery of both structural clarity and fine textures
across diverse scenes.

The proposed model is well suited for real-world applications
such as autonomous driving, surveillance, UAV-based imaging,
underwater exploration, and satellite observation. Its modular
architecture generalizes well across diverse domains, including
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FIGURE 2 Row 1: (a) non-homogeneous haze (b) 3D green intensity graph of non-homogeneous haze, Row 2: (a) homogeneous haze, (b) 3D green
intensity graph of homogeneous haze

daytime, night-time, remote sensing, and underwater scenes,
without requiring architecture-specific tuning. Although the
current implementation relies on paired data, the model can
be extended for semi-supervised training. Its lightweight design
also supports the deployment on edge devices with moderate
computational resources.

The key contributions of the proposed work are outlined as
follows:

1. We propose a novel end-to-end deep learning network com-
prising four dedicated submodules: NAM, ACNM, FEM, and
DRM, each enhancing image clarity and contrast.

2. The ACNM module adopts an encoder–decoder structure
that emphasizes informative channel features, thereby boost-
ing dehazing performance.

3. Our model restores haze-free images without estimating
transmission maps or atmospheric light, leveraging FEM for
multiscale contextual processing.

4. Extensive experiments were conducted on diverse datasets
including indoor, outdoor, remote sensing, underwater, and
night-time scenes to demonstrate the superiority of our
approach over existing methods.

2 RelatedWork

Single image dehazing (SID) has been approached through
both prior-driven and learning-based methodologies. This sec-
tion categorizes related work into three groups: hand-crafted

prior-based models, deep learning-based strategies, and recent
domain-adaptive or real-time dehazing efforts.

2.1 Prior-Based Strategies

Traditional SID techniques rely on statistical or physical assump-
tions about the haze formation process. The dark channel prior
(DCP) byHe et al. [23] is a foundationalmethod that assumes low-
intensity pixels in haze-free images, allowing transmission map
estimation. Follow-up works enhanced its robustness [5, 24].

Alternative priors have emerged to estimate scene depth and
atmospheric light. Zhu et al. [3] proposed a colour attenuation
model based on the brightness and saturation of the pixels, while
Fattal [25] used colour line distributions in small patches. Berman
et al. [26] introduced non-local clusters of colour lines, and
improved pixel separation using colour ellipsoids.

Although effective in some cases, these models are sensitive
to their assumptions and may cause artefacts such as colour
distortion or inaccurate transmission estimates, especially in
complex or dense haze scenes.

2.2 Learning-Based Strategies

Data-driven SIDmethods leverage CNNs to overcome the rigidity
of hand-crafted priors. DehazeNet [8] estimates transmission
using learned filters, while AOD-Net [11] combines transmission
and atmospheric light into a unified prediction task.
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Ren et al. [27] introduced the gated fusion network (GFN), which
combines various enhanced images to generate haze-free outputs
without relying on atmospheric priors. Shao et al. [28] focused on
domain adaptation to bridge synthetic-real domain gaps.

Recent architectures adopt encoder–decoder structures for direct
image restoration. MFINEA [13] fuses hierarchical features to
enhance edges and [4] uses residual attention modules to
recover fine details. Pyramid CNNs and U-Net variants [29] also
contribute to the preservation of spatial fidelity.

Another direction leverages weak supervision: Fahim et al. [30]
proposed a semisupervised atmospheric component learning
method using no-reference metrics and physical priors to restore
visibility under low-light conditions. These approaches reflect
the trend towards attention-based and self-supervised strategies,
which inspire the design and training choices in our work.

2.3 Modular and Comparative Strategies

Some models, such as LIDN [31] employ modular designs
similar to ours, yet struggle with issues such as colour shifts.
Others, like GFN and [32] eliminate reliance on the atmospheric
scattering model (ASM), improving generalization. However,
these models either lack structural flexibility or require pre-
processing schemes.

In contrast, our model introduces a fully modular, ASM-
independent hybrid framework comprising noise suppression,
adaptive encoding, feature aggregation, and detail refinement.
This enhances robustness across varied haze densities and
domains without additional pre-processing or hand-crafted pri-
ors.

2.4 Application-Oriented Strategies

Recent studies have introduced additional innovations in deep
learning-based dehazing. For example, Wang et al. [33] employed
adaptive Retinex and prior fusion to improve visibility under
extreme conditions. Alenezi et al. [34] proposed a real-time
dehazing algorithm optimized for low-latency environments.

Lian et al. [35] presented a feature fusion approach with multi-
scale attention to better handle noise and varying illumination.
Hu et al. [36] ioslates the sky region of hazy images using
mean shift with sky color priors through adaptive thresholding
based on that region. Sahu et al. [37] introduced a multistream
design tailored for intelligent transportation. Compared to these
task-specific frameworks, our method is designed to generalize
across diverse real-world domains without requiring application-
specific tuning.

3 Proposed Method

The proposed framework comprises four submodules: (i) noise
attenuation module (NAM) for noise suppression; (ii) adaptive
ConvNet module (ACNM) for encoder–decoder based dehazing;
(iii) detail refinement module (DRM) for structural and textural

enhancement; and (iv) feature extraction module (FEM) for local
feature recovery. Each module performs a distinct sub-task, and
their outputs are fused via a learnable weighted summation to
produce the final dehazed result.

Figure 3 illustrates the modular architecture, where all submod-
ules receive the input image in parallel. This design promotes
complementary feature learning without sequential redundancy.

3.1 Noise Attenuation Module

TheNAMreduces sensor and atmospheric noisewhile preserving
essential details. It applies successive convolutionswith tanh acti-
vation to maintain gradient smoothness and batch normalization
(BN) for stable convergence. The early layers 𝑋1 to 𝑋3 (with 128
filters) capture noise patterns, while the deeper layers 𝑋6 to 𝑋9

refine the structure, producing the denoised output 𝑂NAM.

Let’s 𝐼 ∈ ℝ𝐻×𝑊×𝐶 denote the input imagewith𝐻 = 400,𝑊 = 400,
and 𝐶 = 3. The convolutional operation is defined as:

𝑋𝑖 = 𝑓(𝑊𝑖 ∗ 𝑋𝑖−1 + 𝑏), 𝑖 = 1, 2, 3, 4 (4)

where𝑊𝑖 and 𝑏𝑖 represent the convolution filters and biases, and
𝑓(⋅) is the tanh activation function:

𝑓(𝑥) = tanh(𝑥) (5)

Batch normalization is applied as

𝑁1 =
𝑋4 − 𝜇𝑋4

𝜎𝑋4
+ 𝜖

𝛾 + 𝛽 (6)

where𝜇𝑋4
and 𝜎𝑋4

are themean and standard deviation of𝑋4, and
𝛾, 𝛽 are learnable parameters.

After deeper convolutions (𝑋6 to𝑋9), the final output of the NAM
is

𝑂NAM = 𝑁2 (7)

3.2 Adaptive ConvNet Module

The ACNM Module serves as a generative encoder–decoder
network for end-to-end image dehazing. The term “adaptive”
refers to themodule’s ability to dynamically adjust its feature pro-
cessing pipeline to varying haze distributions. Skip connections
allow the reuse of both low-level spatial features and high-level
abstractions, enabling the network to generalize across diverse
haze conditions without relying on handcrafted priors.

This design preserves structural fidelity and fine textures while
effectively removing haze. The FEM is applied after the detail
refinement module, further encodes residual spatial features to
enhance structure, texture, and localized details in the final
reconstruction stage.
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FIGURE 3 Overall architecture of the proposed modular dehazing framework. The four modules: noise attenuation, adaptive ConvNet, detail
refinement, and feature extraction-process the input image in parallel, and their outputs are fused through a learnable weighted summation to generate
the final dehazed image. Colour coding indicates functional categories as shown in the legend.

3.2.1 Encoding Phase

The input image 𝐼 undergoes a series of convolutional operations
that reduce spatial resolution and capture abstract features. The
transformation begins with:

𝑈𝑋2
= 𝑓(𝑊0 ∗ 𝐼 + 𝐵0) (8)

Here, 𝑓(⋅) denotes a non-linear activation function, which
enables the capture of complex image patterns and high-
frequency details. Successive encoder layers are defined as:

𝐸𝑋𝑖
= 𝑓(𝑊𝐸𝑖

∗ 𝐸𝑋𝑖−1 + 𝑏𝐸𝑖 ), 𝑖 = 1, 2, 3 (9)

Here, 𝐸𝑖 denotes the 𝑖th encoder feature map generated during
the encoding stage of the ACNM Module, which progressively
captures abstract image representations at multiple levels. The
final encoder layer, with 32 filters, compresses the feature maps
to a compact representation:

𝐸𝑧1
= 𝑓(𝑊𝑧1

∗ 𝐸𝑋3
+ 𝑏𝑧1 ) (10)

3.2.2 Skip Connection Blocks (SCBs)

To preserve spatial information and improve gradient flow,
skip connection blocks (SCBs) are incorporated. These

FIGURE 4 The skip connection block architecture. The number of
convolutional layers could be different for three different blocks (3, 3, and
5). The detailed description of each block is explained in Section 3.

blocks directly pass encoder features to the corresponding
decoder layers, helping retain fine-grained details. The
detailed structure of the skip connection block is illustrated in
Figure 4.

Each SCB consists of convolutional operations and ReLU activa-
tion:

SCB𝑖 = 𝑔(𝑊SCB𝑖 ∗ 𝐸𝑋𝑖
+ 𝑏SCB𝑖 ) + 𝐸𝑋𝑖

(11)

where 𝑔(𝑥) = max(0, 𝑥) is the ReLU activation function.

6 of 20 IET Image Processing, 2025
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3.2.3 Decoding Phase

The decoder reconstructs the dehazed image through transposed
convolutions, gradually increasing spatial resolution. Initial lay-
ers restore global structure, while deeper layers refine textures.

𝐷𝑧𝑖
= 𝑓(𝑊𝐷𝑖

∗ SCB + 𝑏𝐷𝑖
), 𝑖 = 1, 2, 3, 4 (12)

The final dehazed output is obtained via:

𝑂ACNM = 𝜎(𝑊final ∗ 𝐷𝑋2
+ 𝑏final) (13)

Here, it𝜎(𝑥) = sigmoid(𝑥) ensures pixel values remainwithin the
valid range [0,1].

3.3 Detail Refinement Module

The DRM enhances edges and fine textures. It applies a 128-filter
ReLU convolution for salient structures, followed by tanh layers
for smooth texture recovery. To preserve natural appearance, the
refined features are concatenated with the original input:

𝐷𝑋1
= 𝑔(𝑊𝐷1

∗ 𝐼 + 𝑏𝐷1
) (14)

In this context, 𝐷𝑖 represents the 𝑖th decoder feature map
within the DRM module, which emphasizes significant patterns
and progressively enhances fine structural details. Subsequent
layers use tanh activation to smooth transitions and capture
fine-grained texture.

𝐷𝑋2
= tanh(𝑊𝐷2

∗ 𝐷𝑋1
+ 𝑏𝐷2

) (15)

𝐷𝑋3
= 𝑊𝐷3

∗ 𝐷𝑋2
+ 𝑏𝐷3

(16)

The final output combines the refined features with the original
input to avoid over-modification:

𝐷DRM = Concat(𝐼, 𝐷𝑋3
) (17)

3.4 Feature Extraction Module

The FEM Module enhances local contrast and edge details by
learning hierarchical representations. It is applied after the DRM
to capture residual structural and textural information, improving
the final reconstruction.

To achieve this, it uses three convolutional layers with ReLU
activation, followed by a final linear convolution to condense
features:

𝐹𝑋𝑖
= 𝑔(𝑊𝐹𝑖

∗ 𝐹𝑋𝑖−1 + 𝑏𝐹𝑖 ), 𝑖 = 1, 2, 3 (18)

Here, 𝐹𝑖 corresponds to the 𝑖th hierarchical featuremap extracted
in the FEM module, responsible for learning residual spatial
and textural information critical for detail preservation. A final
convolutional layer transforms the output into a condensed
feature representation:

𝐹𝑋4
= 𝑊𝐹4

∗ 𝐹𝑋3
+ 𝑏4 (19)

ALGORITHM 1 Proposed dehazing method.

Input: Hazy image 𝐼, initialized parameters 𝜃
Output: Enhanced dehazed image 𝑂final

1 Initialize 𝜃 for NAM, ACNM, FEM, DRM, learning rate
𝜂, iteration counter 𝑡 = 0;

2 Extract noise patterns: 𝑋𝑖 = tanh(𝑊𝑖 ∗ 𝑋𝑖−1 + 𝑏𝑖);
3 Batch normalization: 𝑁1 =

𝑋4−𝜇(𝑋4)

𝜎(𝑋4)+𝜖
𝛾 + 𝛽;

4 Denoised output: 𝑂NAM = 𝑁2;
5 Encode features: 𝐸𝑋𝑖

= 𝑓(𝑊𝐸𝑖
∗ 𝐸𝑋𝑖−1 + 𝑏𝐸𝑖 );

6 Skip connections: SCB𝑖 = ReLU(𝑊SCB𝑖 ∗ 𝐸𝑋𝑖
+ 𝑏SCB𝑖 )

+ 𝐸𝑋𝑖
;

7 Decode features: 𝐷𝑍𝑖
= 𝑓(𝑊𝐷𝑖

∗ SCB + 𝑏𝐷𝑖
);

8 Dehazed output: 𝑂ACNM = 𝜎(𝑊final ∗ 𝐷𝑋2
+ 𝑏final);

9 Extract features: 𝐹𝑋𝑖
= ReLU(𝑊𝐹𝑖

∗ 𝐹𝑋𝑖−1 + 𝑏𝐹𝑖 );
10 Transform: 𝐹𝑋4

= 𝑊𝐹4
∗ 𝐹𝑋3

+ 𝑏4;
11 Concatenate: 𝑂FEM = Concat(𝐼, 𝐹𝑋4

);
12 Refinement: 𝐷𝑋1

= ReLU(𝑊𝐷1
∗ 𝐼 + 𝑏𝐷1

);
13 Further refine: 𝐷𝑋2

= tanh(𝑊𝐷2
∗ 𝐷𝑋1

+ 𝑏𝐷2
);

14 Final transformation: 𝐷𝑋3
= 𝑊𝐷3

∗ 𝐷𝑋2
+ 𝑏𝐷3

;
15 Concatenate: 𝑂DRM = Concat(𝐼, 𝐷𝑋3

);
16 Final output: 𝑂final = 𝛼𝑂𝑁𝐴𝑀 + 𝛽𝑂ACNM + 𝛾𝑂FEM

+ 𝛿𝑂DRM;

To retain spatial and colour consistency, the output is concate-
nated with the original image:

𝑂FEM = Concat(𝐼, 𝐹𝑋4
) (20)

This fusion enables the model to blend learned features with
original content, enhancing contrast and edge preservation.

3.5 Final Output Integration

Outputs from all modules are aggregated through weighted
element-wise summation:

𝑂final = 𝛼𝑂NAM + 𝛽𝑂ACNM + 𝛾𝑂FEM + 𝛿𝑂DRM (21)

where 𝛼, 𝛽, 𝛾, and 𝛿 are learnable weights optimized during
training to balance contributions from each module. The overall
procedure of the proposed work is shown in Algorithm 1.

3.6 Loss Function

Throughout the training process, our model learns the function
𝐹𝑤(𝐼|𝐺), where 𝑤 represents the set of trainable parameters, 𝐼
denotes the input image, and 𝐺 represents the relevant, clear
image. The mean square error (MSE) stands as the frequently
employed loss function for image generation and is articulated
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TABLE 2 Impact of different loss combinations on image restora-
tion performance.

Loss combination PSNR (dB) SSIM

MSE only 25.63 0.864
MSE + SSIM 26.72 0.879
MSE + Perc 26.15 0.872
MSE + SSIM + Perc 27.31 0.889

as:

MSE = 1

𝑁

𝑁∑
𝑥=1

3∑
𝑖=1

‖𝑦̂𝑖(𝑥) − 𝑦𝑖(𝑥)‖2 (22)

where 𝑦̂𝑖(𝑥) is the intensity of the 𝑖th colour channel of the pixel
𝑥 in the input image, and 𝑦𝑖(𝑥) is the respective ground truth.
MSE loss is useful for image restoration because of its simplicity,
smoothness, and pixel-wise comparison.

However, this loss is sensitive to outliers and tends to excessively
penalize the optimization process, which results in blurring in
the reconstructed image. To mitigate this blurring, the proposed
model incorporates a fusion of the other two loss functions:SSIM
and Perc, that are defined as

SSIM(𝑦̂𝑖(𝑥), 𝑦𝑖(𝑥)) = 1 − SSIM(𝑦̂𝑖(𝑥), 𝑦𝑖(𝑥)) (23)

SSIM is a perceptual metric used to quantify image deterioration
by evaluating changes in structural information, luminance,
and contrast. It aids in maintaining the structural integrity
and perceptual quality of images. Perceptual loss is computed
using features extracted from a pre-trained convolutional neural
network, typically VGG19. This loss is the mean squared error
among the feature representations of the ground truth and
predicted images at a specific convolutional layer. The perceptual
loss is defined as:

Perc(𝑦̂𝑖(𝑥), 𝑦𝑖(𝑥)) =
1

𝑁

𝑁∑
𝑖=1

‖𝜙(𝑦̂𝑖(𝑥)) − 𝜙(𝑦𝑖(𝑥))‖2 (24)

where, 𝜙 is the feature extraction function from the VGG19
network. 𝑦̂𝑖(𝑥) and 𝑦𝑖(𝑥) are the true and estimated output,
respectively. 𝑁 is the number of feature elements.

The combined loss function that includes MSE, SSIM loss, and
perceptual loss can be defined as:

Combined_loss = 𝛼 ⋅ MSE + 𝛽 ⋅ SSIM + 𝛾 ⋅ Perc (25)

where 𝛼, 𝛽, and 𝛾 are hyperparameters that harmonize the vari-
ous losses by assigning weights to each component. This ensures
the model optimizes overall performance without emphasizing a
single metric too heavily. The effectiveness and necessity of each
loss component and its corresponding weight are validated via a
sensitivity analysis, as detailed in Table 2.

3.6.1 Effect of Loss Function Composition

We evaluated the necessity of each loss component by conducting
an ablation studywith different loss configurations. Table 2 shows
that using all three loss functions—MSE, SSIM, and perceptual—
leads to the best performance in terms of PSNR and SSIM and
also promotes stable convergence during training. The values
in Table 2 were obtained by training the model on the SOTS
indoor dataset from RESIDE, using identical hyperparameters
for fair comparison. The weight values for each loss were
empirically selected to balance perceptual quality and recon-
struction fidelity, based on the convergence behaviour during
training.

4 Experiments

In this section, we present a comprehensive evaluation of the
proposed framework through a series of experiments. We begin
by detailing the benchmark datasets and implementation config-
urations used for training and testing. Subsequently, we outline
the baseline and recent state-of-the-art methods included for
comparative analysis, along with the metrics adopted to assess
image quality. This is followed by quantitative and qualitative
results that illustrate the effectiveness of our method. Finally, we
conduct an ablation study to examine the individual contribution
of each module within the network.

4.1 Implementation Details

4.1.1 Datasets

We train our model using a combination of real-world and syn-
thetic datasets. The I-HAZE and O-HAZE datasets, introduced
by Ancuti et al. [38, 39], are real-world datasets captured using
controlled haze machines in indoor and outdoor environments,
respectively. I-HAZE consists of 35 pairs of high-resolution indoor
images with and without haze, while O-HAZE contains 45
pairs of outdoor hazy images and their corresponding ground
truths.

In addition, we utilize the RESIDE-6K dataset [40], a large-scale
synthetic benchmark comprising 6000 paired indoor and outdoor
images with varying haze densities. This diverse dataset helps
improve themodel’s generalization acrossmultiple scenarios. For
further evaluation, we test the generalizability of our model on
practical datasets, including SateHaze1k [41], a remote sensing
dataset with three fog density levels (thin, moderate, and thick).
Each level contains 320 training, 35 validation, and 45 test
image pairs.

We also assess the method’s performance on synthetic night-time
scenes using selected samples from the Nighttime Hazy Mid-
dlebury (NHM) dataset [42], which provides hazy images with
variable illumination and haze intensity. Given the similarity
between haze in the atmosphere and scattering in underwater
scenes, we extend our approach to underwater image enhance-
ment. For this, we use theEUVPdataset [43], which includes 2185
real-world underwater images, with 2000 used for training and
185 for testing.

8 of 20 IET Image Processing, 2025
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4.1.2 Training Details

The method was implemented using the TensorFlow library, and
every experiment was conducted on two NVIDIA GeForce RTX
4090 GPUs. We employed ADAM with default values for 𝛽1 and
𝛽2 for optimization, with a learning rate of 0.001. The proposed
method was trained by optimizing the loss function  as defined
in Equation (22). The network is designed to process input
images of size 400 × 400; therefore, each image in the training
dataset undergoes random cropping to maintain consistency and
optimize performance.

We empirically set the loss weights as 𝛼 = 1.0, 𝛽 = 0.5, and
𝛾 = 0.2 based on sensitivity analysis, aiming to balance per-
ceptual quality and reconstruction fidelity while ensuring sta-
ble convergence. These values were selected by monitoring
PSNR/SSIM trends and training stability on the validation set. To
enhancemodel generalization and prevent overfitting,we applied
random cropping, horizontal flipping, and brightness jittering
during training.

4.1.3 Evaluation Settings

To validate the proposed model, we contrast it with various
advanced methods on synthetic, real-day, synthetic night vision,
and remote sensing datasets. To further affirm the efficacy of the
proposed algorithm, we conduct a comparative evaluation with
underwater recovery algorithms using the EUVP dataset. The
widely recognized full-reference image quality assessment met-
rics, mean-square error (MSE), peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) [44], are utilized to quan-
titatively evaluate the performance of the proposed approach and
other dehazing methods. Specifically, PSNR measures the pixel-
wise difference between the restored and ground-truth images,
while SSIM assesses image similarity by considering luminance,
contrast, and structural characteristics. Higher values of these
metrics generally indicate superior performance. Additionally,
the CIEDE2000 metric [45] is employed to quantify the colour
discrepancy between the restored and ground-truth images. We
report the average PSNR and SSIM of 26 state-of-the-art dehaz-
ing methods with different prior, supervised, semi-supervised,
and unsupervised methods on the synthetic outdoor testing
set (SOTS) dataset in Table 3. Since haze primarily impacts
vision systems used outdoors, our evaluation mainly focuses on
testing these methods using outdoor datasets. We have used O-
HAZE and I-HAZE to evaluate the effectiveness of the proposed
algorithm with the existing algorithms, including DCP [23],
non-local [26], AOD-Net [11], GCAN [46], and MFAN [47].

Similarly, dehaze results on satellite remote sensing StateHaze1k
datasets have been compared with DCP [23], MSBDN [48], ACER
[49], TBN [50], and SGID [51]. To showcase the efficacy of the
proposed model, we contrast it with several professional night-
time dehazing methods on synthetic imaging datasets, including
NDIM [52], GS [2], MRP [53], OSFD [42], and VDM [54].

Using the EUVP dataset, we evaluate the model performance
by comparing it with several underwater restoration models,
including PGC-DN [55], MSBDN [48], i-Dehaze [56], U-Shape
[57], and WaveNet [58]. All evaluations on real and synthetic

hazy, night-vision, and underwater datasets have been done using
PSNR and SSIM metrics.

4.2 ComparisonWith State-of-the-Art Methods

4.2.1 Qualitative Evaluation

In this section, we conduct a qualitative analysis comparing our
approach with other leading dehazing methods, as illustrated
in Figures 5–11. Figure 5 shows the visualization results from
different methods in the synthetic test datasets, specifically
SOTS-Outdoor [40].

Prior-based methods like DCP and non-local commonly exhibit
excessive enhancement and loss of original colours. For instance,
the sky regions may become excessively enhanced and are visible
in all the images. AOD-Net either fails to eliminate haze in dense
circumstances effectively or generates diminished luminosity
compared to the original. In the second image, only GCAN and
the proposed method effectively eliminate the haze from the
motorcycle (bottom-left of the image). However, GCAN results
in images with haze patches and distortions near the street light
(visible upon closer inspection), while the proposed approach
generates a more lifelike image.

We extended our qualitative evaluation to both synthetic and
real-world datasets. For example, from the real-world datasets
depicted in Figure 6, the proposed model diminishes more haze
than the leading techniques in diverse environments. The out-
door dehazed images of DCP and non-locals exhibit severe colour
distortion. The AOD-Net dehazed images show a noticeable haze
residue. GCAN and MFAN display haze-distorted patches and
perform well primarily on synthetic datasets such as RESIDE.

Figure 7 shows the dehazed results of the real-life I-Haze dataset.
DCP showsnoticeable dehazing effects in indoor images,whereas
AOD-Net’s images have visible haze left. GDN and MSBDN
perform adequately well on synthetic datasets; however, their
outcomes on real datasets are not as effective as ours. GDN’s out-
comes exhibit visible distortions, andMSBDN shows a significant
colour deviation in the enlarged details. Ourmethod outperforms
others in both haze elimination and colour recovery.

To further validate real-world applicability, we employed samples
from the Waterloo dataset and additional real-world images.
Figure 8 shows a qualitative comparison of dehazing results on
real-world images sourced from the Waterloo dataset and other
real-world samples. The comparison includes DehazeNet [8],
DHGAN [59], DehazeGAN [60], CNBID [14], and our proposed
method. DehazeNet provides moderate haze suppression but
leaves residual haze, particularly in the sky and distant objects.
DHGAN and DehazeGAN improve dehazing depth but often
generate unnatural colours or brightness, especially in facial and
urban areas. CNBID enhances visibility yet tends to oversaturate
and distort colour balance. In contrast, our method demonstrates
superior haze removal while preserving realistic textures and
tones across varied conditions—architecture, cityscapes, por-
traits, and foliage. These results verify the generalizability and
robustness of our model to complex, real-world haze scenarios
beyond synthetic datasets such as RESIDE and SOTS.
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TABLE 3 Quantitative comparisons on the SOTS dataset.

Method Type

SOTS (outdoor) SOTS (Indoor)

PSNR ↑ SSIM ↑ MSE ↓ CIEDE2000 ↓ PSNR ↑ SSIM ↑ MSE ↓

DCP [23] Prior 18.54 0.710 0.259 10.199 18.87 0.794 0.190
BCCR [66] Prior 15.71 0.769 − − − − −
NCP [26] Prior 18.07 0.802 − − − − −
Dual-SaleNet [67] Prior + supervised 21.76 0.909 − − − − −
DehazeNet [8] Supervised 26.84 0.826 0.033 − 22.66 0.833 0.145
MSCNN [9] Supervised 21.73 0.831 0.125 10.207 20.01 0.791 0.144
AOD-Net [11] Supervised 24.08 0.873 0.127 7.287 21.01 0.816 0.118
GFN [27] Supervised 21.67 0.852 0.040 − 22.44 0.884 0.069
GMAN [32] Supervised 28.19 0.964 − − 27.94 0.897 −
EPDN [68] Supervised 22.57 0.863 − − − − −
GCANet [46] Supervised 21.66 0.867 0.139 7.314 − − 𝟎.𝟎𝟎𝟔

MSCNN-HE [69] Supervised 22.72 0.871 − − − − −
FD-GAN [70] Supervised 23.769 0.926 − 6.537 − − −
GFN-IJCV [71] Supervised 24.21 0.849 − − − − −
MSFNet [72] Supervised 𝟑𝟎.𝟎𝟕 0.939 − − − − −
Semi-Dehazing [73] Semi-supervised 24.79 0.892 − 4.856 − − −
PSD [63] Semi-supervised 20.49 0.844 − 14.292 − − −
SLAdehazing [74] Self-supervised 24.33 0.932 − − − − −
CycleGAN [75] Unsupervised 17.32 0.706 − 13.394 − − −
Cycle-Dehaze [76] Unsupervised 18.60 0.797 − 13.967 − − −
Deep-DCP [77] Unsupervised 20.99 0.893 − − − − −
YOLY [78] Unsupervised 20.39 0.889 − 8.557 − − −
LIGHT-Net [79] Unsupervised 23.11 0.917 − − − − −
Cycle-SNSPGAN [80] Unsupervised 23.91 0.911 − − − − −
UCL-Dehaze [20] Unsupervised 25.21 0.927 − 4.784 − − −
Ours Supervised 28.44 𝟎.𝟗𝟔𝟕 𝟎.𝟎𝟐𝟓 𝟒.𝟏𝟓𝟎 𝟐𝟖.𝟒𝟐 𝟎.𝟖𝟗𝟗 0.057

FIGURE 5 Visual results comparison on the SOTS-Outdoor
dataset.

Figure 9 presents visual comparisons of various methods in the
moderate Haze1K dataset. DCP exhibits severe colour distortion
due to its strong reliance on atmospheric priors, leading to

inaccurate estimations in complex scenes. AlthoughMSBDN and
AECR produce better dehazing results, their restored images
show noticeable discrepancies in colour and illumination com-
pared to the original. TBN partially improves colour fidelity but
compromises fine details in certain regions. SGID, on the other
hand, introduces an unintended blue hue due to the incorpora-
tion of blur features within its network, affecting overall image
quality. As depicted in the first image, our reconstructed image
closely resembles the GT in overall colour and exhibits a more
effective dehazing impact in the grass area. In general, our model
demonstrates strong dehazing performance, producing images
that closely match ground truth in terms of hue, brightness,
detail, and clarity. This observation is further corroborated by
quantitative analysis.

Moreover, we also perform evaluations on synthetic night-time
images. Three typical synthetic examples with varying degrees of
haze were chosen from the recently published “Nighttime Hazy
Middlebury” (NHM) dataset, as illustrated in Figure 10. As shown
in Figure 10, NDIM substantially enhances the visibility and
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FIGURE 6 Visual results comparison on the O-Haze dataset.

contrast of night-time hazy images. However, the dehazed results
exhibit an unnatural appearance with uneven illumination. GS
fails to compensate for brightness, resulting in dim images. MPR
effectively removes night-time haze but does not alleviate the
glowing phenomena near light sources. OSFD does not recover
details and all these methods amplify noise due to not addressing
night-time hazy image noise, as seen in the second and last rows
of Figure 10. VDM performs better in comparison to alternative
methods; however, it fails to comply with the ground truth of
these synthetic night-vision images. Overall, these algorithms fail
to offer a holistic solution for night-time image dehazing. Con-
versely, the proposed framework enhances contrast, compensates
for brightness, suppresses noise, and reveals details.

Light scattering and absorption by water lead to colour deviations
in underwater images. Therefore,we utilized themodel presented
for underwater image restoration and contrasted it with various
algorithms, including the most recent underwater restoration
techniques such as U-shape and WaveNet. Figure 11 illustrates
that our method outperforms others in the EUVP data set. In
the same figure, the results of PGC-DN and MSBDN exhibit
noticeable colour deviations. Although U-shape and WaveNet
provide relatively better colour restoration, their overall image
quality and texture preservation remain suboptimal. Specifically,
in the last row, U-ahape fails to retain fine texture details, while
WaveNet produces darkened outputs. i-Dehaze delivers com-
paratively better performance but tends to overbrighten certain
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FIGURE 7 Visual results comparison on the I-Haze dataset.

FIGURE 8 Qualitative comparison of real-world hazy images from the Waterloo dataset and other real-world samples.

FIGURE 9 Visual results comparison of the moderation on StateHaze1k dataset.
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FIGURE 10 Visual results comparison of night-time dehazing methods on synthetic scenes.

regions, leading to unnatural enhancements. In contrast, our
method achieves superior visual quality by effectively balancing
colour fidelity and detail preservation, which is particularly chal-
lenging in underwater environments due to light absorption and
scattering effects. This robustness allows our approach to recover
underwater scenes more realistically and comprehensively than
existing methods.

However, while our method restores most regions effectively,
minor colour distortions can still occur in distant background
areas, as observed in the second image of Figure 11. These arte-
facts are attributed to depth-dependent scattering and intensity

attenuation in underwater images, which remain difficult to fully
compensate for. Addressing this limitation will be part of our
future work through the integration of depth-aware correction
mechanisms to further enhance restoration performance in
extreme depth zones.

4.2.2 Quantitative Evaluation

Despite not incorporating the atmospheric scattering model, the
proposedmodel exhibits remarkably strong dehazing capabilities.
It surpasses numerous cutting-edge plug-in techniques, even
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FIGURE 11 Visual results comparison on the EUVP dataset.

on datasets generated with the atmospheric scattering model.
As indicated in Table 3, our model delivers outstanding PSNR
and SSIM performance, significantly surpassing other supervised
dehazing algorithms in the outdoor SOTS dataset. Furthermore,
compared to semi-supervised and unsupervised methods, our
approach demonstrates unique advantages. It is possible that
prior-based approaches typically emphasize improving overall
image visibility while neglecting issues such as colour distortion
and detail loss during restoration. For example, DCP struggles to
dehaze sky regions effectively and often introduces artefacts. The
proposed model effectively tackles many of these challenges and
generates superior haze-free images.

We also assessed our model on the indoor SOTS dataset (see
Table 3). In this setting, its effectiveness once again stands out
significantly, surpassing other competing methods by a consider-
able gap in terms of PSNR and SSIM values. These results suggest
that the proposed approach is not only viable but also effective
in achieving remarkable dehazing outcomes for images captured
both outdoors and indoors.

Table 4 presents the quantitative performance of various dehazing
algorithms in real-world O-HAZE and I-HAZE datasets. On O-
HAZE, our method achieves a PSNR of 24.92 and SSIM of 0.816,
while on I-HAZE it reaches a PSNR of 26.18 and SSIM of 0.863.
Compared to traditional and earlier deep learning approaches,
the proposed model consistently shows high performance across
both datasets. Notably, while CARL-Net and TUSR-Net show
marginally higher PSNR on O-HAZE, our method achieves
a better trade-off between contrast restoration and structural
fidelity, reflected in a balanced SSIM score.

Recent state-of-the-art methods such as DNMGDT [22], which
incorporates domain transfer and multi-prior guidance, exhibit
moderate performance but fall short on both datasets compared
to our method. Specifically, DNMGDT achieves a PSNR of 18.20
and SSIM of 0.793 on O-HAZE and 17.99/0.83 on I-HAZE. These

TABLE 4 Quantitative comparisons on the O-HAZE and I-HAZE
datasets.

Method

O-HAZE I-HAZE

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

DCP [23] 16.78 0.653 14.43 0.725
AOD-Net [11] 17.56 0.650 13.98 0.732
GDN [10] 18.92 0.672 16.62 0.787
PGC-DN [55] 24.91 0.773 26.99 0.889
MSBDN [48] 24.36 0.749 23.93 𝟎.𝟖𝟗𝟏

CARL-Net [61] 𝟐𝟓.𝟖𝟑 0.807 25.43 0.880
TUSR-Net [62] 25.34 0.765 − −
CAP [3] 14.55 0.567 13.42 0.650
NCP [26] 18.44 0.722 16.02 0.760
PSD [63] 16.45 0.610 14.49 0.626
DehazeFormer [12] 22.31 0.820 18.10 0.801
MGBL [64] 18.43 0.816 18.75 0.816
PFF [65] 22.93 0.750 18.41 0.782
GCANet [46] 18.05 0.743 18.57 0.744
UHD [17] 23.2 𝟎.𝟖𝟑𝟒 18.77 0.784
DNMGDT [22] 18.20 0.793 17.99 0.83
Ours 24.92 0.816 𝟐𝟔.𝟏𝟖 0.863

results underscore the superiority of our unified dehazing and
detail enhancement strategy, particularly in preserving texture in
dense haze conditions. Furthermore, Table 5 compares the per-
formance on the StateHaze1k dataset, which includes a moderate
haze density. Our method achieves a PSNR of 27.35 and an SSIM
of 0.947, outperforming DehazeFormer [12] (26.53/0.941) and
MFINEA [13] (27.61/0.942). These methods, despite employing
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TABLE 5 Quantitative comparison on StateHaze1k with moderate
hazy density.

StateHaze1k dataset

Method PSNR ↑ SSIM ↑

DCP [23] 9.78 0.591
MSBDN [48] 22.94 0.873
ACER [49] 24.03 0.879
TBN [50] 27.42 0.944
SGID [51] 23.95 0.935
Dehazeformer [12] 26.53 0.941
MFINEA [13] 𝟐𝟕.𝟔𝟏 0.942
Ours 27.35 𝟎.𝟗𝟒𝟕

transformer-based attention or multiscale feature fusion, do
not exceed the balanced restoration performance achieved by
our design.

Although certain methods like MSBDN and TBN occasionally
report slightly higher individual PSNR or SSIM, our model
provides a better global balance across all evaluated metrics,
includingCIEDE2000 andMSE. This consistency in performance
across data sets and conditions highlights the adaptability and
effectiveness of our modular design.

These comparisons collectively demonstrate that the proposed
method not only competes strongly with but also exceeds
recent state-of-the-art methods in most scenarios, validating its
robustness for real-world image dehazing tasks.

To avoid subjective evaluation bias, we used two well-known full-
reference metrics, PSNR and SSIM, for quantitative comparisons.
Table 6 displays the evaluation results for Figure 10. Our method
obtains the highest scores for PSNRand SSIM, indicating superior
dehazing performance in hazy scenes at night. Furthermore,
the NHM data set [42], comprising synthetic images 350 with
various levels of haze, was used to assess the robustness of the
proposed framework. Table 7 showcases the quantitative results
on the EUVP dataset, while Figure 11 illustrates the qualitative
results. As depicted in the table, our method surpasses the
top underwater restoration algorithms, U-Shape and WaveNet,
in terms of PSNR by 28.78, respectively, and SSIM by 0.885,
respectively.

4.3 Ablation Study

To assess the contribution of each module in our proposed
strategy, we conducted an ablation study using a synthetic vali-
dation dataset. All the models are retrained in the same training
strategy and evaluated on the outdoor synthetic validation set.
The results, presented in Table 8, highlight the effect of removing
individual modules on performance metrics, including mean
squared error (MSE), peak signal-to-noise ratio (PSNR), and
structural similarity index (SSIM).

4.3.1 Effect of Different Components in Robust
Convolutional Strategy

The NAM is designed to suppress noise in input data before
further processing. Removing NAM led to a significant drop in
performance, with MSE increasing from 0.005 to 0.012, PSNR
decreasing from 25.480 dB to 19.860 dB, and SSIM dropping from
0.989 to 0.864. These results confirm that noise attenuation is
crucial for enhancing the clarity of the input signal. The ACNM
is responsible for adaptive feature extraction and learning spatial
relationships. When ACNM was removed, MSE increased to
0.009, PSNR dropped to 22.609 dB, and SSIM decreased to 0.915.
Although the degradation in performance is not as severe as the
removal of NAM, these results highlight the module’s role in
feature adaptation. The DRM enhances fine details in the recon-
structed signal. Removing DRM resulted in an MSE increase to
0.008, a drop in PSNR to 22.387 dB, and an SSIM reduction to
0.899. These results suggest that while DRM improves perceptual
quality, its absence does not drastically degrade objective met-
rics. FEM is the most computationally intensive component in
terms of performance. Without FEM, MSE increased to 0.007,
PSNR dropped to 22.990 dB, and SSIM declined to 0.913. The
results demonstrate that FEM plays a critical role in learning
hierarchical representations, enabling themodel to achieve state-
of-the-art performance. The full model, integrating all modules,
achieves the best results with MSE of 0.005, PSNR 25.480 dB,
and SSIM of 0.989. The performance gains validate the necessity
of each component, with FEM contributing the most to overall
inference time.

These findings suggest that while removing individual mod-
ules may lead to computational savings, it often comes at the
cost of decreased performance. FEM, although computationally
expensive, is indispensable for maintaining high-quality outputs,
whereas NAM,ACNM, andDRMcollectively refine and optimize
the results. The ablation study justifies the architecture’s design
choices, balancing accuracy with efficiency for practical deploy-
ment.

Visual analysis: Figure 12 further provides qualitative insight
into the effect of each module through visual comparisons.
Without NAM, the image retains visible haze, particularly in
uniform regions, resulting in poor contrast and edge blurring—
demonstrating the importance of early noise suppression. When
DRM is removed, the output appears overly smoothed with
diminished detail restoration, especially in textures and object
boundaries, indicating its role in enhancing fine details. Exclud-
ing FEM results in moderate dehazing but compromises on
structural depth and colour fidelity, particularly in sky and
shadow areas. In contrast, the full model output is noticeably
superior, displaying strong haze removal, colour consistency, and
sharper edges. These visual results validate the necessity of each
proposed module for achieving perceptually and quantitatively
optimal dehazing performance.

4.4 Efficiency Analysis

Efficiency is crucial for vision applications; therefore, we eval-
uated the performance of various advanced dehazing methods
and listed their average run times in Figure 13. All methods were
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TABLE 6 Quantitative comparisons on synthetic night-time hazy images in Figure 10.

NDIM [52] GS [2] MRP [53] OSFD [42] VDM [54] Ours

Image PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Image 1 12.36 0.616 13.71 0.665 14.18 0.725 14.42 0.727 𝟏𝟓.𝟖𝟒 0.749 15.71 𝟎.𝟖𝟏𝟕

Image 2 14.69 0.683 14.92 0.715 14.86 0.740 14.37 0.748 16.66 0.789 𝟏𝟖.𝟒𝟐 𝟎.𝟕𝟗𝟖

Image 3 14.90 0.609 14.38 0.628 15.79 0.668 16.57 0.679 𝟏𝟔.𝟔𝟔 0.689 16.62 𝟎.𝟖𝟎𝟑

FIGURE 12 Visual results on a real-world hazy image under different architectural configurations of the proposed model.

FIGURE 13 Average run time (seconds) of different methods tested on SOTS dataset.
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TABLE 7 Quantitative comparison on EUVP dataset.

EUVP dataset

Method PSNR ↑ SSIM ↑

PGC-DN [55] 22.83 0.830
MSBDN [48] 27.91 0.866
I-Dehaze [56] 23.01 0.840
U-Shape [57] 28.75 0.882
WaveNet [58] 28.62 0.839
Ours 𝟐𝟖.𝟕𝟖 𝟎.𝟖𝟖𝟓

TABLE 8 Ablation results on synthetic validation data. Each row
shows the performance after removing one module from the full model.

Experiment MSE ↓ PSNR ↑ SSIM ↑

w/o NAM 0.012 19.860 0.864
w/o ACNM 0.009 22.609 0.915
w/o DRM 0.008 22.387 0.899
w/o FEM 0.007 22.990 0.913
Full model 𝟎.𝟎𝟎𝟓 𝟐𝟓.𝟒𝟖𝟎 𝟎.𝟗𝟖𝟗

TABLE 9 Model complexity and runtime comparison highlighting
our method’s efficiency.

Method Parameters FLOPs Runtime (s)

FFDNet 486K 14.3G 0.062
DCPDN 18.6M 54.6G 0.134
GridDehazeNet 9.6M 36.1G 0.089
MSBDN 31.4M 125.8G 0.178
Ours 1.04M 6.47G 0.038

tested on a system with two NVIDIA GeForce RTX 4090 GPUs.
The growing need for computing power places higher demands
on hardware, limiting the widespread adoption of many models.
In contrast, our approach does not require extensive computa-
tional resources. Our lightweight, efficient model processes a
hazy image from the SOTS dataset in about 0.047 s, making it
swifter and more effective than other dehazing algorithms.

Table 9 provides a quantitative assessment of computational
complexity and inference speed for various dehazing methods.
Our final model achieves the lowest parameter count at 1.04M
and the minimum FLOPs of 6.47G, while also attaining the
fastest runtime of 0.038 s. This clearly demonstrates the superi-
ority of our approach in balancing efficiency and performance,
making it highly suitable for real-time deployment and resource-
constrained environments. The lightweight nature of our design
significantly outperforms larger models such as MSBDN and
DCPDN in both complexity and speed.

4.5 Discussion

The modular design of the proposed dehazing network con-
tributes to its flexibility and effectiveness in handling awide range
of haze conditions. By isolating tasks such as noise suppression,
feature enhancement, contextual encoding, and detail refinement
into dedicated components, the model is better equipped to
preserve texture and contrast across complex scenes. A key
strength lies in its ability to generalize across domains including
night-time, underwater, and remote sensing imagery, without
relying on domain-specific tuning or handcrafted priors. The
architecture also supports fast inference, making it a practical
choice for real-time and embedded applications. Despite its
strengths, the current model is trained in a fully supervised set-
ting, which may limit its applicability when paired training data
are unavailable. Incorporating semi-supervised or unsupervised
learning strategies in future work could further improve adapt-
ability. Moreover, exploring temporal consistency may extend its
use to video dehazing applications.

5 Conclusions and Future Work

In this paper, we propose a lightweight convolutional neural
network-based model to address the critical problems of image
dehazing. The model consists of four primary components: (i)
a noise attention module; (ii) an adaptive ConvNet module;
(iii) a feature extraction module; and (iv) a detail refinement
module. These modules collectively improve colour restoration,
brightness, image detail, and feature extraction accuracy. Com-
prehensive experiments showcase the efficacy of thesemodules in
overcoming commondrawbacks of cutting-edgemethods, includ-
ing diminished colour richness and overly pronounced edges.
Our model removes haze under diverse conditions, including
synthetic night vision, remote sensing, and underwater image
enhancement, producing more realistic output images.

As a supervised method, the proposed model requires large
amounts of high-quality labelled training data, which may not
always be available in real-world dehazing scenarios. Although
it achieves strong performance across diverse conditions, this
reliance on paired data can limit scalability when ground truth is
scarce. Future work will therefore focus on extending the frame-
work to semi-supervised and self-supervised paradigms, reducing
dependency on paired datasets and improving adaptability to
unseen environments. In addition, integrating the model as a
preprocessing stage in object detection and tracking systems can
enhance reliability in practical applications such as autonomous
driving, surveillance, and remote sensing.
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